Context, Approach and Evolution Use and Significance of Slang and Logika Feedback Discussion Next Steps
0000 00000 [e]e] 000 [o]e]

Teaching with Logika

Conceiving and Constructing Correct Software

Stefan Hallerstede® (sha@ece.au.dk)
John Hatcliff? (hatcliff@ksu.edu)
Robby? (robby@ksu.edu)

I Aarhus University
2Kansas State University

FMTea, Milan, Italy, 10 September 2024

S. Hallerstede | Aarhus University | Teaching with Logika | FMTea, Milan, Italy, 10 September 2024 [1]

Context, Approach and Evolution Use and Significance of Slang and Logika Feedback Discussion Next Steps
0000 00000 [e]e] 000 [o]e]

Context, Approach and Evolution

Use and Significance of Slang and Logika

Feedback

Discussion

Next Steps

KANSAS STATE | crir

N UNTVERSITY Colegeofengineering

S. Hallerstede | Aarhus University | Teaching with Logika | FMTea, Milan, Italy, 10 September 2024 [2]

Context, Approach and Evolution Use and Significance of Slang and Logika Feedback Discussion Next Steps
@000 00000 [e]e] 000 [o]e]

Context, Approach and Evolution

AARHUS
/ NI UNIVERSITY KANSAS STATE | carifice
DESARTIENT OF FECTHCAL Ao COMPUTER uGEEic O N 1V E RS 1 T Y | Collgeof ngincering

S. Hallerstede | Aarhus University | Teaching with Logika | FMTea, Milan, Italy, 10 September 2024 [3]

Context, Approach and Evolution Use and Significance of Slang and Logika Feedback Discussion Next Steps
[o] lele} 00000 [e]e] 000 [o]e]

Software Engineering Curriculum

® Development of new BSc/MSc curriculum at Aarhus University (Engineering, Fall 2018)
® Problem solving, modelling, reasoning, and verification are woven into “common” courses

AARHUS
/ NI UNIVERSITY KANSAS STATE | carifice
DESARTIENT OF FECTHCAL Ao COMPUTER PuGEEic O N 1V E RS 1 T Y | Collgeof ngincering

S. Hallerstede | Aarhus University | Teaching with Logika | FMTea, Milan, Italy, 10 September 2024 [4]

Context, Approach and Evolution Use and Significance of Slang and Logika Feedback Discussion Next Steps
[o] lele} 00000 [e]e] 000 [o]e]

Software Engineering Curriculum

® Development of new BSc/MSc curriculum at Aarhus University (Engineering, Fall 2018)
® Problem solving, modelling, reasoning, and verification are woven into “common” courses

® Introduction to Programming (BSc 10 ECTS — informal)

® Software Architecture (BSc 5 ECTS — informal)

® Discrete Mathematics (BSc 5 ECTS — informal)

® Programming and Modelling (BSc 10 ECTS - formal)

® Declarative Programming (BSc&MSc 10 ECTS — informal/formal)

® Software Correctness (MSc 5 ECTS — formal)

AARHUS
/ NI UNIVERSITY KANSAS STATE | carifice

S. Hallerstede | Aarhus University | Teaching with Logika | FMTea, Milan, Italy, 10 September 2024 [4]

Context, Approach and Evolution Use and Significance of Slang and Logika Feedback Discussion

Next Steps
[o] lele} 00000 [e]e] 000 [o]e]

Software Engineering Curriculum

® Development of new BSc/MSc curriculum at Aarhus University (Engineering, Fall 2018)

® Problem solving, modelling, reasoning, and verification are woven into “common” courses
® Introduction to Programming (BSc 10 ECTS — informal)

Software Architecture (BSc 5 ECTS — informal)

Discrete Mathematics (BSc 5 ECTS — informal)

Programming and Modelling (BSc 10 ECTS — formal)

Declarative Programming (BSc&MSc 10 ECTS — informal/formal)
® Software Correctness (MSc 5 ECTS — formal)

® | ocal students are prepared for formal methods thinking

® They see Slang and Logika in Programming and Modelling and Software Correctness
® Slang: Scala dialect with verification support
® lLogika: Interactive support for programming and verifying with Slang

AARHUS
/ NI UNIVERSITY KANSAS STATE | carifice

S. Hallerstede | Aarhus University | Teaching with Logika | FMTea, Milan, Italy, 10 September 2024 [4]

Context, Approach and Evolution Use and Significance of Slang and Logika Feedback Discussion Next Steps
[o] lele} 00000 [e]e] 000 [o]e]

Software Engineering Curriculum

Development of new BSc/MSc curriculum at Aarhus University (Engineering, Fall 2018)
Problem solving, modelling, reasoning, and verification are woven into “common” courses
® Introduction to Programming (BSc 10 ECTS — informal)

® Software Architecture (BSc 5 ECTS — informal)

® Discrete Mathematics (BSc 5 ECTS — informal)

® Programming and Modelling (BSc 10 ECTS - formal)

® Declarative Programming (BSc&MSc 10 ECTS — informal/formal)
[]

Software Correctness (MSc 5 ECTS — formal)
Local students are prepared for formal methods thinking
They see Slang and Logika in Programming and Modelling and Software Correctness
® Slang: Scala dialect with verification support
® lLogika: Interactive support for programming and verifying with Slang
Cohort on MSc level is mixed — background at MSc level varies
® Slang and Logika are well-suited for this situation

AARHUS
/ NI UNIVERSITY KANSAS STATE | carifice

S. Hallerstede | Aarhus University | Teaching with Logika | FMTea, Milan, Italy, 10 September 2024 [4]

Context, Approach and Evolution Use and Significance of Slang and Logika Feedback
[e]e] e} 00000

Discussion
[e]e]

[e]e]e}

Evolution of the Course

® |n 2012 started predecessor course (as programming course)
® Using Java, Scheme and Prolog

® Some reasoning about functional and logical programs
® Used informal inductive proofs

KANSAS STATE | canvie

o UNIVERSITY ColegeofEngincering

S. Hallerstede | Aarhus University | Teaching with Logika | FMTea, Milan, Italy, 10 September 2024

Next Steps
[o]e]

[5]

Context, Approach and Evolution Use and Significance of Slang and Logika Feedback Discussion
[e]e] e} 00000 [e]e] 000

Evolution of the Course

® |n 2012 started predecessor course (as programming course)
® Using Java, Scheme and Prolog
® Some reasoning about functional and logical programs
® Used informal inductive proofs
® |n 2016 tried to include some Coq
® |n 2017 tried to include some Isabelle
® Both of these were difficult to get across to the students

/v

Next Steps
[o]e]

S. Hallerstede | Aarhus University | Teaching with Logika | FMTea, Milan, Italy, 10 September 2024 [5]

Context, Approach and Evolution Use and Significance of Slang and Logika Feedback Discussion Next Steps
[e]e] e} 00000 [e]e] 000 [o]e]

Evolution of the Course

® |n 2012 started predecessor course (as programming course)
® Using Java, Scheme and Prolog
® Some reasoning about functional and logical programs
® Used informal inductive proofs

® |n 2016 tried to include some Coq
® |n 2017 tried to include some Isabelle

® Both of these were difficult to get across to the students
[

In 2018 introduced Slang/Logika
® This worked well, staying focused on programming methodology
® Started design of new course based on Slang/Logika (dropping Prolog)

AARHUS
/ NI UNIVERSITY

S. Hallerstede | Aarhus University | Teaching with Logika | FMTea, Milan, Italy, 10 September 2024 [5]

Context, Approach and Evolution Use and Significance of Slang and Logika Feedback Discussion Next Steps
[e]e] e} 00000 [e]e] 000 [o]e]

Evolution of the Course

® |n 2012 started predecessor course (as programming course)
® Using Java, Scheme and Prolog
® Some reasoning about functional and logical programs
® Used informal inductive proofs
In 2016 tried to include some Coq
In 2017 tried to include some Isabelle
® Both of these were difficult to get across to the students
In 2018 introduced Slang/Logika
® This worked well, staying focused on programming methodology
® Started design of new course based on Slang/Logika (dropping Prolog)
In 2023 the new course Software Correctness was established

AARHUS
/ NI UNIVERSITY KANSAS STATE | carifice

S. Hallerstede | Aarhus University | Teaching with Logika | FMTea, Milan, Italy, 10 September 2024 [5]

Context, Approach and Evolution Use and Significance of Slang and Logika Feedback Discussion Next Steps
[o]e]

oooe

00000 (e]e] [e]e]e}

Content and Objectives
® Schedule:

AARHUS
/v UNIVERSITY

DEPARTIENT OF FIECTRICAL AND COMPUTER PNGNEERNG U N | V E R S | T Y | College of Engineering

Week 1: Introduction — Reasoning about software (and tool installation)

Week 2: Tracing Facts — Pick up the students reasoning in familiar ways

Week 3: Conditionals — Progress slowly discussing different approaches

Week 4: Contracts (Test) — Ensure students see benefit for their programming skills
Week 5: Contracts (Proof) — Based on preceding week but using compositional proof
Week 6: Loops and Recursion — Some theory: programs are just another kind of formula
Week 7: Unfolding and Fixpoints — More theory with large and complex formulas

Week 8: Loops and Recursion Testing — Ensure students see benefit

Week 9: Sequences and Arrays — Increase complexity of programs

Finally: Verification Examples and Practice — Provide methodology backed by examples

KANSAS STATE | carifice
S. Hallerstede | Aarhus University | Teaching with Logika | FMTea, Milan, Italy, 10 September 2024 [6]

Context, Approach and Evolution Use and Significance of Slang and Logika Feedback Discussion Next Steps
[o]e]

oooe

00000 (e]e] [e]e]e}

Content and Objectives
® Schedule:

AARHUS
/v UNIVERSITY

Week 1: Introduction — Reasoning about software (and tool installation)

Week 2: Tracing Facts — Pick up the students reasoning in familiar ways

Week 3: Conditionals — Progress slowly discussing different approaches

Week 4: Contracts (Test) — Ensure students see benefit for their programming skills
Week 5: Contracts (Proof) — Based on preceding week but using compositional proof
Week 6: Loops and Recursion — Some theory: programs are just another kind of formula
Week 7: Unfolding and Fixpoints — More theory with large and complex formulas

Week 8: Loops and Recursion Testing — Ensure students see benefit

Week 9: Sequences and Arrays — Increase complexity of programs

Finally: Verification Examples and Practice — Provide methodology backed by examples
Accompanied by a programming project where some test and proof is applied (mostly at home)
Exercises only in class (teacher helps)

KANSAS STATE | canivie
wc UNIVERSITY CollgeofEngineering

S. Hallerstede | Aarhus University | Teaching with Logika | FMTea, Milan, Italy, 10 September 2024 [6]

Context, Approach and Evolution Use and Significance of Slang and Logika Feedback Discussion Next Steps
oooe 00000 [e]e] 000 [o]e]

Content and Objectives
® Schedule:

® Week 1: Introduction — Reasoning about software (and tool installation)

Week 2: Tracing Facts — Pick up the students reasoning in familiar ways

Week 3: Conditionals — Progress slowly discussing different approaches

Week 4: Contracts (Test) — Ensure students see benefit for their programming skills
Week 5: Contracts (Proof) — Based on preceding week but using compositional proof
Week 6: Loops and Recursion — Some theory: programs are just another kind of formula
Week 7: Unfolding and Fixpoints — More theory with large and complex formulas

Week 8: Loops and Recursion Testing — Ensure students see benefit

Week 9: Sequences and Arrays — Increase complexity of programs

Finally: Verification Examples and Practice — Provide methodology backed by examples
Accompanied by a programming project where some test and proof is applied (mostly at home)
Exercises only in class (teacher helps)

® QObjectives:
® |mprove programming skills, testing skills, documentation skills, reasoning skills
® Do not limit students’ vision to Slang,
so the material becomes relevant beyond the course

AARHUS
/ g o KANSAS STATE | carifice

UNIVERSITY ColegeofEngineering

S. Hallerstede | Aarhus University | Teaching with Logika | FMTea, Milan, Italy, 10 September 2024 [6]

Context, Approach and Evolution Use and Significance of Slang and Logika Feedback Discussion Next Steps
0000 @0000 (e]e] [e]e]e} (oo}

Use and Significance of Slang and Logika

AARHUS
/ NI UNIVERSITY KANSAS STATE | carifice
DESARTIENT OF FECTHCAL Ao COMPUTER uGEEic O N 1V E RS 1 T Y | Collgeof ngincering

S. Hallerstede | Aarhus University | Teaching with Logika | FMTea, Milan, Italy, 10 September 2024 [7]

Context, Approach and Evolution Use and Significance

A Quick Tour of Slang and
The User Interface DE*:;,J v

& maximum_diff.sc
£ maximum_diff_ded.sc

& maximum_simple.sc

& maximum_simple.ded.sc
& nested_max.sc

& swap_block sc
& swap_choice.sc
1 Weeka
£ Linear_Combination_Contract_Test_Faultsc
£ Max_ Function_Frame.sc
& Max_ Function_Frame_Contract sc
£ Max_Function_Frame_Contract_Test.sc
£ Max Function_Pure.sc
£ Max_ Function_Pure_Contract.sc
& Max_ Function_Pure_Contract_Test.sc
£ Max_Function_Pure_Deduce.sc

£l Two_Square_Contract_Test_Fault.sc
© CIWeeks

£ Uinear_Function_impure.sc

£ Linear_Function.Impure_Spec.sc

& Linear_Function._Pure.sc

£l Swap_Function_Contract.sc.

£ Swap_Function_Fun_Contracts.sc
£ Swap_Mutable_Assignment_Contracts.sc
£ Swap_Mutable_Assignment_Exercise.sc
£ Swap_Mutable_Assignment_Frames.sc
£ Swap_Mutable_Deduce.sc

[Week?
£ Count_int_Loop_Rec.sc
£ Count_Int_Loop_Rec_Term.sc
£ Fac_Function_Loop_Rec.sc
& Fac_Function_Loop_Rec_Term.sc

AARHUS
/ NI UNIVERSITY KANSAS STATE | carifice

DEPARTIENT OF FIECTRICAL AND COMPUTER PNGNEERNG U N | V E R S | T Y | College of Engincering

Feedback Discussion
[e]e] 000

of Slang and Logika

Logika

// #Sireum #Logika
import org.sireum._
val x: Z = randonInt()
val y: Z = randomInt()

var z: Z =0
if (x <y)

-~

} else {
z=x
+
assert(z = x vz = y)
assert(y < z A x < 2)

Next Steps
[o]e]

S. Hallerstede | Aarhus University | Teaching with Logika | FMTea, Milan, Italy, 10 September 2024 [8]

Context, Approach and Evolution

0000

A Quick Tour of Slang and

 [1Week3
8

The User Interface

AARHUS
/v UNIVERSITY

[e] le]e]e}

absvalue_nnsc
& boolor.sc

& maximum_diff.sc

£ maximum_diff_ded.sc

& maximum_simple.sc

& maximum_simple.ded.sc
& nested_max.sc

£ swap_block.sc
& swap_choice.sc

[Weekd
& Linear_Combination_Contract.Test_Faultsc
& Max_Function_Frame.sc
£ Max_Function_Frame_Contract.sc
£ Max_Function_Frame_Contract_Test.sc
& Max_Function_Pure.sc
& Max_Function._Pure_Contract.sc
£ Max_Function_Pure_Contract_Test.sc
£ Max_Function_Pure_Deduce.sc
£l Two_Square_Contract_Test_Fault.sc

© [JWeeks

& Linear_Function Impure.sc
£ Linear_Function_Impure_Spec.sc
& Linear_Function_Pure.sc
£l Swap_Function_Contract.sc.
£ Swap_Function_Fun_Contracts.sc
£ Swap_Mutable_Assignment_Contracts.sc
£ Swap_Mutable_Assignment_Exercise.sc
£ Swap_Mutable_Assignment_Frames.sc
£ Swap_Mutable_Deduce.sc

[Week?
£ Count_int_Loop_Rec.sc
£ Count_Int_Loop_Rec_Term.sc
£ Fac_Function_Loop_Rec.sc
£ Fac_Function_Loop.Rec_Term.sc

KANSAS STATE | canvie

DEPARTIENT OF FIECTRICAL AND COMPUTER PNGNEERNG U N | V E R S | T Y | College of Engincering

Use and Significance

of Slang and Logika

Feedback Discussion
[e]e] 000

Logika

> // #Sireum #Logika

import org.sireum._
randonInt()
randonInt()

val x: Z =
val y: Z =

if (x<y)

} else {

assert(y <

assert(z =

var z: Z =0

-~

Next Steps
[o]e]

Slang is a dialect of the
Scala programming language

S. Hallerstede | Aarhus University | Teaching with Logika | FMTea, Milan, Italy, 10 September 2024 [8]

Context, Approach and Evolution

0000 [e] le]e]e}

Use and Significance of Slang and Logika

Feedback Discussion
[e]e] 000

A Quick Tour of Slang and Logika

>

~ [Week3
The User Interface samouems
E boolor.sc
& maximum_diff.sc
£ maximum_diff_ded.sc
£ maximum_simple.sc
£ maximum_simple_ded.sc
£ nested_max.sc

£ swap_block.sc

& swap_choice.sc

[Weekd
& Linear_Combination_Contract.Test_Faultsc
& Max_Function_Frame.sc
£ Max_Function_Frame_Contract.sc
£ Max_Function_Frame_Contract_Test.sc
& Max_Function_Pure.sc
& Max_Function._Pure_Contract.sc
£ Max_Function_Pure_Contract_Test.sc
£ Max_Function_Pure_Deduce.sc
£l Two_Square_Contract_Test_Fault.sc

© [JWeeks

& Linear_Function Impure.sc
£ Linear_Function_Impure_Spec.sc
& Linear_Function_Pure.sc
£l Swap_Function_Contract.sc.
£ Swap_Function_Fun_Contracts.sc
£ Swap_Mutable_Assignment_Contracts.sc
£ Swap_Mutable_Assignment_Exercise.sc
£ Swap_Mutable_Assignment_Frames.sc
£ Swap_Mutable_Deduce.sc

[Week?
£ Count_int_Loop_Rec.sc
£l Count_iInt_Loop_Rec_Term.sc
= Fac_Function_Loop_Rec.sc
£ Fac_Function_Loop.Rec_Term.sc

AARHUS
/ NI UNIVERSITY KANSAS STATE | carifice

DEPARTIENT OF FIECTRICAL AND COMPUTER PNGNEERNG U N | V E R S | T Y | College of Engincering

// #Sireum #Logika

import org
val x: Z =
val y: Z =

var z: Z =0

if (x<y)

} else {

assert(z =

assert(y <

-~

.sireum._
randonInt()
randonInt()

Next Steps
[o]e]

Slang is a dialect of the
Scala programming language

Functional and imperative programming

S. Hallerstede | Aarhus University | Teaching with Logika | FMTea, Milan, Italy, 10 September 2024 [8]

Context, Approach and Evolution Use and Significance of Slang and Logika Feedback Discussion Next Steps
[o]e]

0000 0e000 [e]e] 000
A Quick Tour of Slang and Logika
The User Interface “umene 27 st gt ¢

val x: Z = randonInt()
val y: Z = randomInt()

£ maximum_diff.sc
£ maximum_diff_ded.sc
E maximum_simple.sc

£ maximum_simple_ded.sc
£ nested_max.sc

vz 220 | Slang is a dialect of the

if (x<y)
& swap_choice.sc

o Scala programming language

£ Linear_Combination_Contract_Test_Fault.sc

£ swap_block.sc

-~

£l Max_Function_Frame.sc

£ Max_Function_Frame_Contract.sc - . . -
e e Functional and imperative programming

£l Max_Function_Pure.sc

£ Max_Function_Pure_Contract.sc: } else {

£ Max_Function_Pure_Contract_Test.sc . a .
B st s Dedicated basic data types with
[WeekS

well-defined semantics

£ Linear_Function_impure_Spec.sc

& Linear_Function_Pure.sc
£l Swap_Function_Contract.sc.
=V

& Swap_Function_Fun_Contracts.sc z
x € 2)

assert(z = x
assert(y < z

v
& Swap. Mutable_Assignment_Contracts.sc A

£l Swap_Mutable_Assignment_Exercise.sc

£ Swap_Mutable_Assignment_Frames.sc

£ Swap_Mutable_Deduce.sc
[Week7

£ Count_int_Loop_Rec.sc

1 Count_int_Loop_Rec_Term.sc
= Fac_Functi

LLoop_Rec.sc
3 Fac_Function_Loop_Rec_Term.sc

AARHUS
/ NI UNIVERSITY KANSAS STATE | carifice
"DEPARTMENT OF FLECTRICAL AND COMPUTERENGINEERNG U N | V E R § 1 T Y | College of Engineering

S. Hallerstede | Aarhus University | Teaching with Logika | FMTea, Milan, Italy, 10 September 2024 [8]

Context, Approach and Evolution Use and Significance of Slang and Logika Feedback Discussion
0000 0e000 [e]e] 000

A Quick Tour of Slang and Logika

// #Sireum #Logika
The User Interface R b
val x: Z = randomInt()

val y: Z = randomInt()

& maximum_diff.sc
& maximum_diff_ded.sc
& maximum_simple.sc

Next Steps
[o]e]

£ maximum_simple_ded.sc N N
vrzz=0 | Slang is a dialect of the

E if (x <y) .
e Scala programming language

£ Linear_Combination_Contract_Test_Fault.sc

£ nested_max.sc
£ swap_block.sc

-~

& Max_Function_Frame.sc £3 z=y

£ Max_Function_Frame_Contract.sc

& Max_Function_Pure.sc

oy, [Functional and imperative programming

£ Max_Function_Pure_Contract.sc T else {

£ Max_Function_Pure_Contract_Test.sc . a .
B st s Dedicated basic data types with
& Two_Square_Contract_Test_Fault.sc

[Weeks

. ’ well-defined semantics

£ Linear_Function_impure_Spec.sc
£ Linear_Function_Pure.sc

£ swap_Function_Contract.sc

£ Swap_Function_Fun_Contracts.sc

assert(z = x
z

v
assert(y < A

{Support for algebraic types, records and arrays]

- Swap_Mutable_Assignment_Frames.sc
£ Swap.Mutable_Deduce.sc
£1Week?
£ Count_int_Loop_Rec.sc
1 Count_int_Loop_Rec_Term.sc
5 Fac_Function_Loop.Rec.sc
3 Fac_Function_Loop_Rec_Term.sc

AARHUS
/ NI UNIVERSITY KANSAS STATE | carifice

DEPARTIENT OF FIECTRICAL AND COMPUTER PNGNEERNG U N | V E R S | T Y | College of Engincering

S. Hallerstede | Aarhus University | Teaching with Logika | FMTea, Milan, Italy, 10 September 2024 [8]

Context, Approach and Evolution Use and Significance

A Quick Tour of Slang and
The User Interface VD;;ET::ZM [LB 17 msin

£ maximum_diff.sc

£ maximum_diff_ded.sc

E maximum_simple.sc

£ maximum_simple_ded.sc
£ nested_max.sc

& swap_block sc
& swap_choice.sc

) Weeka
£ Linear_Combination_Contract_Test_Faultsc

£ Max_Function_Frame.sc

£ Max_Function_Frame_Contract.sc

£ Max_Function_Frame_Contract_Test.sc
£ Max_Function_Pure.sc

£ Max_Function_Pure_Contract.sc

& Max_Function_Pure_Contract_Test.sc
£ Max_Function_Pure_Deduce.sc

£l Two_Square_Contract_Test_Fault.sc
© CIWeeks

£ Uinear_Function_impure.sc

& Linear_Function.Impure_Spec.sc

& Linear_Function._Pure.sc

£l Swap_Function_Contract.sc.

£ Swap_Function_Fun_Contracts.sc
£ Swap.Mutable_A
£ Swap_Mutable_Assignment_Exercise.sc
] Swap_Mutable_Assignment_Frames.sc
£l Swap_Mutable_Deduce.sc

© CIWeek?
& Count.int_Loop_Rec.sc
£ Count_Int_Loop_Rec_Term.sc
& Fac_Function_Loop_Rec.sc
£ Fac._Function_Loop_Rec_Term.sc

ignment_Contracts.sc

AARHUS
/ NI UNIVERSITY KANSAS STATE | carir

DEPARTIENT OF FIECTRICAL AND COMPUTER PNGNEERNG U N | V E R S | T Y | College of Engincering

Feedback Discussion
[e]e] 000

of Slang and Logika

Logika

// #Sireum #Logika
import org.sireum. |
val x: Z = randonInt()
val y: Z = randomInt()

var z: Z =0

Click to show scribed incantations

z=y
} else {
Z =X

T
assert(z = x vz =y)
assert(y € z A x < 2z)

Next Steps
[o]e]

S. Hallerstede | Aarhus University | Teaching with Logika | FMTea, Milan, Italy, 10 September 2024 [8]

Context, Approach and Evolution Use and Significance of Slang and Logika Feedback Discussion Next Steps
[o]e]

0000 0e000 [e]e] 000
A Quick Tour of Slang and Logika
The User Interface v m;:::va‘um se 1D Firew tlogite i e o e e

2 import org.sireum._ satisfiability check for if-else at [7, 7]: Sat
£ boolor.sc

& maximum_diff.sc val x: Z = randomInt()
£ maximum_diff_ded.sc val y: Z = randomInt()
& maximum_simple.sc

£ maximum_simple_ded.sc
£ nested_max.sc var z: Z =0

if (x<y)

; Satisfiability check for if-then at [7, 7]

& swap_blocksc ; Result: Sat

& swap_choice.sc
) Weeka

e coniain Cotac s st Logika uses SMT solvers in the background
2=y

-~

£ Max_Function_Frame.sc

& Max_Function_Frame_Contract.sc T -
£ Max_Function_Frame_Contract_Test.sc ; Claims:

& Max_Function_Pure.sc H

£ Max_Function_Pure_Contract.sc } else { i x == At[z]1(".randon", 0),

& Max_Function_Pure_Contract Testsc i At[z](".randon", 1),
£ Max_Function_Pure_Deduce.sc i
£ Two_Square_Contract_Test_Fault.sc i

© CIWeeks R i
& Linear_Function Impure.sc (set-logic ALL)
£ Linear_Function_Impure_Spec.sc
£ Linear_Function_Pure.sc ¥ (define-sort B () Bool)
£ Swap_Function_Contract.sc (define-fun |B.unary_!| ((x B)) B (not x))
£ Swap_Function_Fun_Contracts.sc assert(z = x vz =y) (define-fun |B.unary_~| ((x B)) B (not x))
£ Swap_Mutable_Assignment_Contracts.sc assert(y € z A x < 2z) (define-fun ((x B) (y B)) B (=xY))
£ Swap_Mutable_Assignment_Exercise.sc (define-fun [B.!=| ((x B) (y B)) B (not (= x y))
£ Swap_Mutable_Assignment_Frames.sc (define-fun |B.&| ((x B) (y B)) B (and x y))

£ Swap_Mutable_Deduce.sc
[Week7
£ Count_Int_Loop_Rec.sc
& Count_Int_Loop_Rec_Term.sc
5 Fac_Functi

(define-fun |B.
(define-fun |B.
(define-fun |B.
(define-fun

| ((x B) (y B)) B (or x y))
((x B) (y B)) B (xor x y))
>:] ((x B) (y B)) B (=> x y))
| ((xB) (yB)) B (=>xY))

LLoop_Rec.sc
& Fac_Function_Loop_Rec_Term.sc

Search 2}

AARHUS
/ NI UNIVERSITY KANSAS STATE | carifice
"DEPARTMENT OF FLECTRICAL AND COMPUTERENGINEERNG U N | V E R § 1 T Y | College of Engineering

S. Hallerstede | Aarhus University | Teaching with Logika | FMTea, Milan, Italy, 10 September 2024 [8]

Context, Approach and Evolution Use and Significance of Slang and Logika Feedback Discussion Next Steps
0000 0e000 [e]e] 000 [o]e]

A Quick Tour of Slang and Logika
The User Interface e T .

£ boolor.sc

& maximum_diff.sc val x: Z = randomInt()
£ maximum_diff_ded.sc val y: Z = randomInt()
& maximum_simple.sc

£ maximum_simple_ded.sc
£ nested_max.sc var z: Z =0

if (x<y)

; Satisfiability check for if-then at [7, 7]

& swap_blocksc ; Result: Sat

& swap_choice.sc "
[Weekd . .
e coniain Cotac s st Logika uses SMT solvers in the background
£l Max_Function_Frame.sc z=y
£ Max_Function_Frame_Contract.sc
£ Max_Function_Frame_Contract_Test.sc

-~

; Claims:

£ Max_Function_Pure.sc

sy Fewe [It also simplifies formulas by rewriting]

£ Max_Function_Pure_Contract_Test.sc

& Max_Function._Pure_Deduce.sc
£ Two_Square_Contract_Test_Fault.sc PXx<y
© CIWeeks R i

£ Uinear_Function_impure.sc (set-logic ALL)
£ Linear_Function_Impure_Spec.sc
£ Linear_Function_Pure.sc } (define-sort B () Bool)
£ Swap_Function_Contract.sc (define-fun |B.unary_!| ((x B)) B (not x))
& Swap_Function._Fun_Contracts.sc ; assert(z = x vz =y) (define-fun |B.unary_~| ((x B)) B (not x))
£ Swap_Mutable_Assignment_Contracts.sc assert(y € z A x < 2) (define-fun ((x B) (y B)) B (= xy))
£ Swap_Mutable_Assignment_ Exercise.sc (define-fun |B.!=] ((x B) (y B)) B (not (= x y))}
£ Swap_Mutable_Assignment_Frames.sc (define-fun |B.&| ((x B) (y B)) B (and x y))
8 Swap_Mutable_Deduce.sc (define-fun [B.[| ((x B) (y B)) B (or x y))

R (define-fun |B.[*| ((x B) (y B)) B (xor x y))
B Count Int Loop.Rec.sc (define-fun [B.__>:| ((x B) (y B)) B (=> x y))
3 Count Int_Loop_Rec_Term.sc (define-fun | ((x B) (y B)) B (=> x y))
= Fac_Function_Loop_Rec.sc
3 Fac_Function_Loop_Rec_Term.sc Search)

AARHUS
/ NI UNIVERSITY KANSAS STATE | carifice
"DEPARTMENT OF FLECTRICAL AND COMPUTERENGINEERNG U N | V E R § 1 T Y | College of Engineering

S. Hallerstede | Aarhus University | Teaching with Logika | FMTea, Milan, Italy, 10 September 2024 [8]

Context, Approach and Evolution Use and Significance of Slang and Logika Feedback Discussion Next Steps
[o]e]

0000 0e000 [e]e] 000
A Quick Tour of Slang and Logika

< Owenra > min P — - —
The User Interface wmmams e R

£ boolor.sc

& maximum_diff.sc val x: Z = randomInt()
£ maximum_diff_ded.sc val y: Z = randomInt()
& maximum_simple.sc

£ maximum_simple_ded.sc
£ nested_max.sc var z: Z =

if (x<y)

; Satisfiability check for if-then at [7, 7]
; Result: Sat

-~ o

& swap_block.sc
& swap_choice.sc "
[Weeka . .
GG [Logika uses SMT solvers in the background]
£ Max_Function_Frame.sc z=y
£ Max_Function_Frame_Contract.sc
E Max_Function_Frame_Contract_Test.sc

; Claims:

£ Max_Function_Pure.sc ' {

£ Max_Function_Pure_Contract.sc else H s e
e e [It also simplifies formulas by rewriting]
£ Max_Function_Pure_Deduce.sc

£l Two_Square_Contract_Test_Fault.sc
< CIWeeks
£ Uinear_Function_impure.sc

ke [AII of this can be inspected interactively

£ Linear_Function_Pure.sc

Px<y

£ Swap_Function_Contract.sc

(define-fun |B.unary_!| ((x B)) B (not x))

B Swap_Function_Fun_Contracts.sc assert(z = x vz =y) (define-fun |B.unary_~| ((x B)) B (not x))

£ Swap.Mutable_Assignment_Contracts.sc assert(y < z A x € 2) (define-fun ((x B) (y B)) B (= x y))

£ Swap_Mutable_Assignment Exercise.sc (define-fun 1B.1=] ((x B) (y B)) B (not (= x y))}
£ Swap.Mutable_Assignment Frames.sc (define-fun 1B.&| ((x B) (y B)) B (and x y))

B Swap_Mutable_Deduce.sc (define-fun [B.|| ((x B) (y B)) B (or x y))

[Week7
£ Count_Int_Loop_Rec.sc

(define-fun |B.
(define-fun |B.
(define-fun

((x B) (y B)) B (xor x y))
>:] ((x B) (y B)) B (=> x y))
| ((xB) (yB)) B (=>xY))

1 Count_int_Loop_Rec_Term.sc
5 Fac_Function_Loop.Rec.sc
3 Fac_Function_Loop_Rec_Term.sc

Search 2}

AARHUS
/ NI UNIVERSITY KANSAS STATE | carifice
"DEPARTMENT OF FLECTRICAL AND COMPUTERENGINEERNG U N | V E R § 1 T Y | College of Engineering

S. Hallerstede | Aarhus University | Teaching with Logika | FMTea, Milan, Italy, 10 September 2024 [8]

Context, Approach and Evolution

0000

[e] le]e]e}

Use and Significance of Slang and Logika

A Quick Tour of Slang and Logika

>

The User Interface

AARHUS
/v UNIVERSITY

Weeks
£ absvalue_nn.sc
& boolor.sc
& maximum_dift.sc
£ maximum_diff_ded.sc
£ maximum_simple.sc
& maximum_simple.ded.sc
& nested_max.sc
& swap_blocksc
& swap_choice.sc
[Weekd
& Linear_Combination_Contract_Test_Fault.sc
& Max_Function_Frame.sc
£ Max_Function_Frame_Contract.sc
& Max_Function_Frame_Contract_Test.sc
& Max_Function_Pure.sc
& Max_Function_Pure_Contractsc
£ Max_Function_Pure_Contract_Test.sc
& Max_Function._Pure_Deduce.sc
£ Two_Square_Contract_Test_Fault.sc

© [Weeks

& Linear_Function Impure.sc
£ Linear_Function_Impure_Spec.sc
& Linear_Function_Pure.sc
£l Swap_Function_Contract.sc.
£ Swap_Function_Fun_Contracts.sc
£ Swap_Mutable_Assignment_Contracts.sc
£ Swap_Mutable_Assignment_Exercise.sc
] Swap_Mutable_Assignment_Frames.sc
£ Swap_Mutable_Deduce.sc
[Week?
£ Count_int_Loop_Rec.sc
1 Count_int_Loop_Rec_Term.sc
= Fac_Function_Loop_Rec.sc
3 Fac_Function._Loop_Rec_Term.sc

KANSAS STATE | canvie

DEPARTIENT OF FIECTRICAL AND COMPUTER ENGHFERRG U N IV E R & 1 T ¥

College of Engineering

Feedback Discussion Next Steps
(e]e] [e]e]e} (oo}

// #Sireum #Logika 'satisfiability check for if-then at [7, 7]: Sat

inport org.sireun. Satisfisbility check for if-else at [7, 71: Sat

val x: Z = randonInt()

val y: Z = randomInt()

var z: Z =60

i)1 ; Satisfiability check for if-then at [7, 7]

P G < ; Result: Sat

[Loglka uses SMT solvers in the background
=

; Claims:

} else {

It also simplifies formulas by rewriting

[
.

All of this can be inspected interactively

assert(z = x v z
z

(define-fun |B.unary_!| ((x B)) B (not x))
(define-fun |B.unary_~| ((x B)) B (not x))

assert(y < A

IThere S no magic

D

)
Tx <y]
)
)

(define-fun [B.
(define-fun |B.
(define-fun |B.
(define-fun

((xB) (y B)) B (or x yJ)
((x B) (y B)) B (xor x y))
>:] ((x B) (y B)) B (=>x y))

Search 2}

S. Hallerstede | Aarhus University | Teaching with Logika | FMTea, Milan, ltaly, 10 September 2024

[8]

Context, Approach and Evolution Use and Significance of Slang and Logika Feedback Discussion Next Steps
0000 0e000 [e]e] 000 [o]e]

A Quick Tour of Slang and Logika
The User Interface “mommme T TR

2 import org.sireun Satisfiability check for if-else at [7, 7: Sat

£ boolor.sc
£ maximum_diff.sc
£ maximum_diff_ded.sc

val x: Z = random

vaty: 2= randoil Proof commands available in Slang syntax
wrzz-0 | (not in comments)

& maximum_simple.sc:
£ maximum_simple_ded.sc
£ nested_max.sc

£ swap_blocksc if (x < y) { ——
ﬁi:::mmn Deduce(k (x < y)) ; Solver: /Users/au443183/Applications/Sireun/bir
5 Linear_Combinaion_Contract Test_Faultsc Deduce(- (x < y)) i Arquments: -snt2 -in rlinit=2009000 -t:500
£ Max_Function_Frame.sc z=y i Time: 0.052s
E Max_Function_Frame_Contract.sc Deduce((x < 2)) i clod
; Claims:

£ Max_Function_Frame_Contract_Test.sc
£ Max_Function_Pure.sc

£ Max_Function_Pure_Contract.sc

£ Max_Function_Pure_Contract_Test.sc

Deduce(F (z = y))
else {

Deduce(F (~(x < y)))
Deduce(k (y € x))

=

; x == At[z](".random", 0),
At[z](".random", 1),

£ Max_Function_Pure_Deduce.sc H
£ Two_Square_Contract_Test Fault.sc ;
© [1Weeks ;
£ Linear_Function_Impure.sc Deduce((y € 2)) ¢
Deduce(k (z = x))

set-logic ALL)

£ Linear_Function_impure_Spec.sc

£ Uinear_Functon.Pure.sc N ' (define-sort B () Bool)

£ Swap_Function_Contract.sc (define-fun |B.unary_!| ((x B)) B (not x))

B Swap_Function_Fun_Contracts.sc E assert(z = x vz =y) (define-fun |B.unary_~| ((x B)) B (not x))

£ Swap.Mutable_Assignment_Contracts.sc assert(y < z A Xx € 2) (define-fun ((x B) (y B)) B (= x y))

£ Swap.Mutable_Assignment_Exercise.sc (define-fun [B.!=| ((x B) (y B)) B (not (= x y))}
£ Swap_Mutable_Assignment Frames.sc (define-fun |B.&| ((x B) (y B)) B (and x y))

£ Swap_Mutable_Deduce.sc
[Week7
£ Count_Int_Loop_Rec.sc

(define-fun |B.
(define-fun |B.
(define-fun |B.
(define-fun

| ((x B) (y B)) B (or x y))
((x B) (y B)) B (xor x y))
>:] ((x B) (y B)) B (=> x y))
| ((xB) (yB)) B (=>xY))

] Count_Int_Loop_Rec_Term.sc

5 Fac_Functi

LLoop_Rec.sc
3 Fac_Function_Loop_Rec_Term.sc

search 2}

AARHUS
/ NI UNIVERSITY KANSAS STATE | carifice
"DEPARTMENT OF FLECTRICAL AND COMPUTERENGINEERNG U N | V E R § 1 T Y | College of Engineering

S. Hallerstede | Aarhus University | Teaching with Logika | FMTea, Milan, Italy, 10 September 2024 [8]

Context, Approach and Evolution Use and Significance of Slang and Logika Feedback Discussion Next Steps
0000 00e00 [o]e]

A Quick Tour of Slang and Logika

Contracts & Proof | "

def swap(a: 2S5, i:Z, j: Z) : Unit = {

Contract(
Requires(0 <
Modifies(a),
Ensures(

£
£
£
£

)
)
val t: Z = a(i)
Deduce(F (t =
a(d) = a(3)
Deduce(F (t =
Deduce((a(i)
a(d) = t
Deduce(k (t =
Deduce(F (a(3)
Deduce(+ (a(3)
Deduce((a(i)

AARHUS
/ NI UNIVERSITY KANSAS STATE | carifice

DEPARTIENT OF FIECTRICAL AND COMPUTER PNGEERNG U N | V E R S | T Y | College of Engineering

// #Sireum #Logika
import org.sireum.

i,

In

In

In

(e]e] [e]e]e}

T [Contracts for compositional reasoning

i<a.size, 0 <

a(i) = In(a)(3),

a(3) = In(a)(d),

V(a.indices)(k = k = i v k = j v a(k) = In(a)(k)),
a.size = In(a).size

(a)(i)))

(a)(1)))
In(a)(3)))

(a)(1)))
1)
In(a)(1)))
In(a)(3)))

S. Hallerstede | Aarhus University | Teaching with Logika | FMTea, Milan, ltaly, 10 September 2024

[9]

Context, Approach and Evolution Use and Significance of Slang and Logika Feedback Discussion Next Steps
0000 00e00 [o]e]

A Quick Tour of Slang and Logika

Contracts & Proof | "

def swap(a: 2S5, i:Z, j: Z) : Unit = {

Contract(
Requires(0 <
Modifies(a),
Ensures(

£
£
£
£

)
)
val t: Z = a(i)
Deduce(F (t =
a(d) = a(3)
Deduce(F (t =
Deduce((a(i)
a(d) = t
Deduce(k (t =
Deduce(F (a(3)
Deduce(+ (a(3)
Deduce((a(i)

AARHUS
/ NI UNIVERSITY KANSAS STATE | carifice

DEPARTIENT OF FIECTRICAL AND COMPUTER PNGEERNG U N | V E R S | T Y | College of Engineering

inport org.sireun.

// #Sireum #Logika

i,

(e]e] [e]e]e}

Contracts for compositional reasoning

i<a.size, 0 < j, j < a.size), [

a(i) = In(a)(3),

a(3) = In(a)(d),

V(a.indices)(k = k = i v k = j v a(k) = In(a)(k)),
a.size = In(a).size

In(a) (19)) Hoare-style reasoning about imperative

In(a) (1))

commands

In(a)(3)))

In(a) (1))

1)
In(a)(1)))
In(a)(3)))

S. Hallerstede | Aarhus University | Teaching with Logika | FMTea, Milan, ltaly, 10 September 2024

[9]

Context, Approach and Evolution Use and Significance of Slang and Logika Feedback Discussion
0000 00e00 [e]e] 000

A Quick Tour of Slang and Logika

Contracts & Proof |7 [riren nosiie

import org.sireun._

def swap(a: 2S5, i:Z, j: Z) : Unit = {

Next Steps
[o]e]

Contract(
Requires(d < i, i < a.size, 0 € j, j < a.size),

[Contracts for compositional reasoning

Modifies(a),

Ensures(
a(i) = In(a)(3),
a(j) = In(a)(d),
V(a.indices)(k = k = i v k = j v a(k) = In(a)(k)),
a.size = In(a).size

)

)

-

val t: Z = a(d) o . .
beduce(F (t — In(a) (1)) Hoare-style reasoning about imperative

a(i) = a(j)
Deduce(F (t = In(a)(i))) commands

Deduce((a(i) = In(a)(3)))

a(d) = t

beduce(F (t = In(a)(1))) Proof in Slang as close as possible to

Deduce(F (a(3) = 1)) .
Deduce(F (a(3) = In(a)())) programming

IR R R R EREEREEEY

Deduce(F (a(i) = In(a)(3)))

AARHUS
/ NI UNIVERSITY KANSAS STATE | carifice

DEPARTIENT OF FIECTRICAL AND COMPUTER PNGEERNG U N | V E R S | T Y | College of Engineering

S. Hallerstede | Aarhus University | Teaching with Logika | FMTea, Milan, Italy, 10 September 2024 [9]

Context, Approach and Evolution Use and Significance of Slang and Logika Feedback Discussion Next Steps
0000 00e00 [e]e] 000 [o]e]

A Quick Tour of Slang and Logika

> // #Sireum #Logika v
import org.sireum._

Contracts & Proof

def swap(a: 75, 1:2, 3 2) : Unit = { [Familiar Interface for students]
Contract(
Requires(d < i, i < a.size, 0 < j, j < a.size),
Modifies(a),
Ensures(

% a(i) = In(a)(3),
f a(i) = In(a)(d), 1
1 % V(a.indices)(k = k = i v k = j v a(k) = In(a)(k)),
1 a.size = In(a).size (
) k: Z
) 3 Example &

val t: Z = a(i)

Deduce(F (t = In(a)(i)))
a(d) = a(3)

Deduce(l (t = In(a)(i)))
Deduce(F (a(i) = In(a)(3)))
a(d) = t

Deduce(l (t = In(a)(i)))
Deduce(k (a(3) = t))
Deduce(F (a(3) = In(a)(i)))
Deduce(+ (a(i) In(a)(3)))

AARHUS
/ NI UNIVERSITY KANSAS STATE | carifice
"DEPARTMENT OF FLECTRICAL AND COMPUTERENGINEERNG U N | V E R S 1 T Y | College of Engineering

S. Hallerstede | Aarhus University | Teaching with Logika | FMTea, Milan, Italy, 10 September 2024 [9]

Context, Approach and Evolution Use and Significance of Slang and Logika
0000 00e00

A Quick Tour of Slang and Logika

> // #Sireum #Logika
import org.sireum._

Contracts & Proof

Feedback
[e]e]

Discussion
000

Next Steps
[o]e]

def swap(a: 7S, 1:Z, j: Z) : Unit = {

[Familiar Interface for students

Contract(

Requires(0 < i, i < a.size, 8 < 3, j < a.size),

rossfies . Interactive inspection of all elements, in-
nsures .
5) = W@, cluding formulas and proof

£ a(j) = In(a)(d), 1
1 % V(a.indices)(k = k = i v k = j v a(k) = In(a)(k)),

1 a.size = In(a).size (

) k: Z
) 3 Example 74

val t: Z = a(i)

Deduce(F (t = In(a)(i)))
a(i) = a(d)

Deduce(F (t = In(a)(i)))
Deduce((a(i) = In(a)(3)))
a(d) = t

Deduce(F (t = In(a)(i)))
Deduce(k (a(j) = t))
Deduce(F (a(3) = In(a)(i)))
Deduce((a(i) In(a)(3)))

AARHUS
/ NI UNIVERSITY KANSAS STATE | carifice

DEPARTIENT OF FIECTRICAL AND COMPUTER PNGEERNG U N | V E R S | T Y | College of Engineering

S. Hallerstede | Aarhus University | Teaching with Logika | FMTea, Milan, Italy, 10 September 2024 [9]

Context, Approach and Evolution
0000

Use and Significance of Slang and Logika Feedback Discussion
00000 oo 000

A Quick Tour of Slang and Logika

Proof Information

4
¥
¥
3
£
¥

@pure def sorted(seq: ISz[z]1): B = {
Contract(
Ensures(Res = AL1(1 until seq.size) (i = seq(i-1) < seq(i)))
)
var res: B = true
var k: Z =1

Next Steps
[o]e]

while (k < seq.size) {

Invariant([Proof information available interactively

Modifies(k, res),
k21,
k-1 2 0,
k-1 < seq.size,
seq.size 2 2 || res = true,
seq.size < 2 v k < seq.size,
seq.size < 2 || res = ALL(1 until k)(i = seq(i-1) < seq(i))
)
Deduce(- (seq.size > 2))
if (seq(k - 1) > seq(k)) {
res = false

Deduce(l (seq.size > 2 || res = ALL(1 until seq.size)(i = seq(i-1) < seq(i))))
Deduce((seq.size < 2 || res = ALL(1 until seq.size)(i = seq(i-1) < seq(i))))
return res

AARHUS
/ NI UNIVERSITY KANSAS STATE | caririce

DEPARTIENT OF FIECTRICAL AND COMPUTER PNGEERNG U N | V E R S | T Y | College of Engincering

S. Hallerstede | Aarhus University | Teaching with Logika | FMTea, Milan, Italy, 10 September 2024 [10]

Context, Approach and Evolution

Proof Information

Contract(

4 Ensures(Res =

)

var k: Z =1

Invariant(

Modifies(k, res),

k21,
k-1 >0,

seq.size 2>

4
¥
¥
3
£
%

)

}
E3 k=k+1
+

return res

}

AARHUS
/ NI UNIVERSITY KANSAS STATE | caririce

DEPARTIENT OF FIECTRICAL AND COMPUTER PNGEERNG U N | V E R S | T Y | College of Engincering

Use and Significance of Slang and Logika
0000 00000

A Quick Tour of Slang and Logika

@pure def sorted(seq: ISz[z]1): B = {

var res: B = true

while (k < seq.size) {

k-1 < seq.size,
2 || res = true,

Deduce(t (seq.size
Deduce((seq.size < 2 || res = ALL(1 until seq.size)(i = seq(i-1) < seq(i))))

Feedback Discussion

Next Steps
[e]e] 000 [o]e]

ALL(1 until seq.size)(i = seq(i-1) < seq(i)))

[Proof information available interactively]

[“cnck the light bulb”]

seq.size < 2 v k < seq.size,
seq.size < 2 || res = ALL(1 until k)(i = seq(i-1) < seq(i))

Deduce((seq.size > 2))
if (seq(k - 1) > seq(k)) {

Click to show some hints e

2 2 || res = ALL(1 until seq.size)(i = seq(i-1) < seq(i))))

S. Hallerstede | Aarhus University | Teaching with Logika | FMTea, Milan, Italy, 10 September 2024 [10]

Context, Approach and Evolution Use and Significance of Slang and Logika Feedback Discussion Next Steps
0000 00000 [e]e] 000 [o]e]

A Quick Tour of Slang and Loglka

"5 Gpure def sorted(seq: IsZ[Z]): ©¥% 7 7 { // state claims at line 23
Contract(At(res, 0) T

£ Ensures(Res = AL1(1 until seq.size) (i = seq(i-1) < seq(i))) AtCk, 0) =
k < seq.size;

Proof Information

) k21

var res: B = true
var k: Z =1
while (k < seq.size) {
Invariant(
Modifies(k, res),

k-120;
k - 1 < seq.size;
seq.size > 2;
seq.size < 2 v

k < seq.size;
~(seq.size < 2);

k> 1, res = ¥(1 until k)(i = seq(i - 1) < seq(i));
k-1 > 0, seq(k - 1) > seq(k)
k-1 < seq.size, ¥
seq.size 2 2 || res = true,
seq.size < 2 v k < seq.size,
seq.size < 2 || res = ALL(1 until kK)(i = seq(i-1) < seq(i))
)
Deduce((seq.size > 2))
if (seq(k - 1) > seq(k)) {
res = false

4
%
¥
2
£
¥

Deduce(l (seq.size > 2 || res = ALL(1 until seq.size)(i = seq(i-1) < seq(i))))
Deduce((seq.size < 2 || res = ALL(1 until seq.size)(i = seq(i-1) < seq(i))))
return res

- Filter claims. 2}

AARHUS
/ NI UNIVERSITY KANSAS STATE | caririce
"DEPARTMENT OF FLECTRICAL AND COMPUTERENGINEERNG U N | V E R § 1 T Y | College of Engineering

S. Hallerstede | Aarhus University | Teaching with Logika | FMTea, Milan, Italy, 10 September 2024 [10]

Context, Approach and Evolution Use and Significance of Slang and Logika Feedback
0000 [e]e]e] lo} (e]e]
A Quick Tour of Slang and Logika
H @pure def sorted(seq: ISz[z]): B = { S¥2~ v
Proof Information ottt
£ Ensures(Res = ALL(1 until seq.size)(i = seq(i-1) < seq(i)))
)
var res: B = true
var k: Z =1
while (k < seq.size) {
Invariant(
Modifies(k, res),
k21,
k-1 2 0,

k-1 < seq.size,

4
%
¥
2
£
¥

)

Deduce((seq.size > 2))

if (seq(k - 1) > seq(k)) {
res = false

return res

AARHUS
/ NI UNIVERSITY KANSAS STATE | caririce

DEPARTIENT OF FIECTRICAL AND COMPUTER PNGEERNG U N | V E R S | T Y | College of Engincering

seq.size 2 2 || res = true,
seq.size < 2 v k < seq.size,

seq.size < 2 || res = ALL(1 until kK)(i = seq Close to the program text

Deduce(l- (seq.size > 2 || res
Deduce(l (seq.size < 2 || res =

Discussion
000

Next Steps
[o]e]

{ // state claims at line 23
At(res, 0) =
At(k, 0)
k < seq.size;

seq.size > 2;
seq.size < 2 v
k < seq.size;
~(seq.size < 2);
res = ¥Y(1 until k)(i = seq(i - 1) <
seq(k - 1) > seq(k)

Proof information

shown to student

= ALL(1 until seq.size) (i = seq(i-1) < seq(i))))
ALL(1 until seq.size)(i = seq(i-1) < seq(i))))

Filter claims.

seq(i));

S. Hallerstede | Aarhus University | Teaching with Logika | FMTea, Milan, Italy, 10 September 2024 [10]

Context, Approach and Evolution Use and Significance of Slang and Logika Feedback Discussion Next Steps
[o]e]

0000 [e]e]e] lo} (e]e] [e]e]e}

A Quick Tour of Slang and Logika

@pure def sorted(seq: ISZ[z]): B = { o7 “|{ // state claims at line 23

Proof Information

Contract(At(res, 0) = T;
£ Ensures(Res = AL1(1 until seq.size) (i = seq(i-1) < seq(i))) AtCk, 0) .
k < seq.size;
) k2 1;
var res: B = true K-130;
var k: Z =1 | k-1 < seq.size;

seq.size > 2;
seq.size < 2 v

while (k < seq.size) {

Invariant(| Kk < seq.size;
Modifies(k, res), ~(seq.size < 2);
'3 k=1, res = V(1 until k)(i = seq(i - 1) < seq(i));
5 k-1 >0, seq(k - 1) > seq(k)
4 k-1 < seq.size,
4 ameien B 2 I 7 = dw, Proof information shown to student
H seq.size < 2 v k < seq.size,
5 seq.size < 2 || res = ALL(1 until kK)(i = seq Close to the program text
)
Deduce(F (seq.size > 2))
 seal - > seal) € Easy to match program text to formulas
res = false
; (also large formulas)
L] k=k+1
+
Deduce(l (seq.size > 2 || res = ALL(1 until seq.size)(i = seq(i-1) < seq(i))))
Deduce((seq.size < 2 || res = ALL(1 until seq.size)(i = seq(i-1) < seq(i))))
return res
i
- Filter claims ()
/ 7 ey KANSAS STATE | caririce

DEPARTIENT OF FIECTRICAL AND COMPUTER PNGEERNG U N | V E R S | T Y | College of Engincering

S. Hallerstede | Aarhus University | Teaching with Logika | FMTea, Milan, Italy, 10 September 2024 [10]

Context, Approach and Evolution Use and Significance of Slang and Logika Feedback Discussion Next Steps
0000 [e]e]e]e]] (e]e] [e]e]e} (oo}

A Quick Tour of Slang and Logika

> // #Sireum #Logika

Informal vs Formal ,~ {0 oo cireum..

val m: Z = randomInt();

val n: Z = randomInt()

val z: Z=m+n

// deduce z == m + n (consequence of assignment)

valy: Z=2z-n

// deduce z == m + n (old fact) .

J/ deduce y == z - n(consequence of assignnent) Informal proofs in comments useable
// deduce y == m (proof by algebra) .

y g without tool support

//

//
val x: Z =2z -y
// deduce z == m + n (old fact)

// deduce y == m (old fact)

// deduce z -y (consequence of assignment)
// deduce x == n (proof by algebra)

// (x==12z-y

// = (m+n)-m

// ==n)

assert(x == n &y == m)

/ AARHUS
N\ UnIVERSITY) KANsAs STATE i
RS sscarmna e UNIVERSITY WIS, Hallerstede | Aarhus University | Teaching with Logika | FMTea, Milan, Italy, 10 September 2024 [11]

Context, Approach and Evolution Use and Significance of Slang and Logika Feedback Discussion Next Steps
0000 [e]e]e]e]] (e]e] [e]e]e} (oo}

A Quick Tour of Slang and Logika

D> // #sireum #Logika
Informal vs Formal ,~ i o siveun.

val m: Z = randomInt();

val n: Z = randomInt()

valz: Z=m+n

// deduce z == m + n (consequence of assignment)

valy: Z=2z-n

// deduce z == m + n (old fact) .

J/ deduce y == z - n(consequence of assignnent) Informal proofs in comments useable
// deduce y == m (proof by algebra) =

7 g without tool support

//

% N

val x: Z =2z -y [AlSO used on white board]
// deduce z == m + n (old fact)

// deduce y == m (old fact)

// deduce z -y (consequence of assignment)

// deduce x == n (proof by algebra)

// (x==2z-y

// = (m+n) -m

// ==n)

assert(x == n &y == m)

/ AARHUS
NI UnvERSITY) ~ Kansas State e
RS sscarmna e UNIVERSITY WIS, Hallerstede | Aarhus University | Teaching with Logika | FMTea, Milan, Italy, 10 September 2024 [11]

Context, Approach and Evolution Use and Significance of Slang and Logika Feedback Discussion Next Steps
0000 [e]e]e]e]] [o]e]

A Quick Tour of Slang and Logika

Informal vs Formal | “

// deduce z
% valy:Z=2z

// deduce z

// deduce y

// deduce y

V4

V

Y

val x: Z =2z
// deduce z
// deduce y
// deduce x

// deduce x

V

// #Sireum #Logika
import org.sireum._

m+n
n
m+n
z-n
m
y
m+n
m
z-y

(e]e] [e]e]e}

val m: Z = randomInt();
val n: Z = randomInt()
val z: Z=m+n

(consequence of assignment)

(old fact)
(consequence of assignment)

(proof by algebra)

[Logika can do many proofs fully automatic]

(y=2z-n
=m+n) -n
m
(old fact)

(old fact)
(consequence of assignment)
(proof by algebra)
x=2z-y

(m+n) -m

=n)

%9 assert(x = n Ay =m

AARHUS
/ NI UNIVERSITY KANSAS STATE | carifice

DEPARTIENT OF FIECTRICAL AND COMPUTER PNGEERNG U N | V E R S | T Y | College of Engincering

Logika Ver

S. Hallerstede | Aarhus University | Teaching with Logika | FMTea, Milan, Italy, 10 September 2024 [11]

Context, Approach and Evolution
0000

Use and Significance of Slang and Logika Feedback Discussion Next Steps
ooooe oo

(e]e] [e]e]e}

A Quick Tour of Slang and Logika

Informal vs Formal | “

// #Sireum #Logika
import org.sireum._

n

// deduce z = m + n
% valy:Z=2z-n

V
Y
/7
Va
V
/7

@ valx: Z=

//

V

deduce z =
deduce y =
deduce y =

deduce z =

deduce y =

// deduce x =

deduce x =

m+n
z-n

m

y

m+n

val m: Z = randomInt();
val n: Z = randomInt()
val z: Z =m +

(consequence of assignment)

(old fact)
(consequence of assignment)

(proof by algebra)
(y=2z-n
=(m+n)-n

m [Beginning students benefit from this]

[Logika can do many proofs fully automatic]

(old fact)
(old fact)
(consequence of assignment)
(proof by algebra)
x=2z-y

(m+n) -m

=n)

%9 assert(x = n Ay =m

AARHUS
/ NI UNIVERSITY KANSAS STATE | carifice

DEPARTIENT OF FIECTRICAL AND COMPUTER PNGEERNG U N | V E R S | T Y | College of Engincering

S. Hallerstede | Aarhus University | Teaching with Logika | FMTea, Milan, Italy, 10 September 2024 [11]

Context, Approach and Evolution Use and Significance of Slang and Logika Feedback Discussion Next Steps
0000 [e]e]e]e]] [e]e] 000 [o]e]

A Quick Tour of Slang and Logika

// #Sireum #Logika

Informal vs Formal | “

import org.sireum._

val m: Z = randomInt();
val n: Z = randomInt()
* val z: Z=m+n

// deduce z = m + n (consequence of assignment)

% valy:Z=2z-n

// deduce z = m + n (old fact)

// deduce = z - n (consequence of assignment) . .

ey T e o et [Lognka can do many proofs fully automatlc]

V (y=2z-n

Vi =m+n -n . - .

v m [Begmnmg students benefit from this]
% valx:Z=2z-y

// deduce z = m + n (old fact)

S v .| If they know that it can be proved,

// deduce x = n (proof by atgebra) Logika confirms or refutes their deductions

V4 x=12z-y

7 (m+n)-m

V4 = n)

%9 assert(x = n Ay =m

Logika Ver
Proof i

/ AARHUS
NI UnvERSITY) ~ Kansas State cniee
RS sscarmna e UNIVERSITY WIS, Hallerstede | Aarhus University | Teaching with Logika | FMTea, Milan, Italy, 10 September 2024 [11]

Context, Approach and Evolution Use and Significance of Slang and Logika Feedback Discussion Next Steps
0000 [e]e]e]e]] [e]e] 000 [o]e]

A Quick Tour of Slang and Logika

// #Sireum #Logika

Informal vs Formal | “

import org.sireum._

val m: Z = randomInt();
val n: Z = randomInt()
* val z: Z=m+n

// deduce z = m + n (consequence of assignment)
% valy:Z=2z-n

// deduce z = m + n (old fact)

// deduce y = z - n (consequence of assignment) . o

) dedvee y —n (oroor by atgenra) [Loglka can do many proofs fully automatlc]
V4 (y=2z-n

/Y = (m+n) -n

D) [Beginning students benefit from this]

% valx:Z=2z-y

// deduce z = m + n (old fact)
e s | If they know that it can be proved,
// deduce x = n (proof by algebra) Logika confirms or refutes their deductions
” -
sy rr— [The students can use Logika like a teacher]

/ AARHUS
NI UnvERSITY) ~ Kansas State cniee
RS sscarmna e UNIVERSITY WIS, Hallerstede | Aarhus University | Teaching with Logika | FMTea, Milan, Italy, 10 September 2024 [11]

Context, Approach and Evolution Use and Significance of Slang and Logika Feedback Discussion Next Steps
0000 00000 []} 000 [o]e]

Feedback

AARHUS
/ NP UnIvERSITY KANSAS STATE | carifice
DEPARTYENT OF FLECTRCAL AN COMPUTER NG U N IV E R § 1 T ¥ | CollegeofEngineering

S. Hallerstede | Aarhus University | Teaching with Logika | FMTea, Milan, Italy, 10 September 2024 [12]

Context, Approach and Evolution Use and Significance of Slang and Logika Feedback
0000 00000

Student Feedback

It was nice with a little mini—project to use some of the techniques learned in
the course

Discussion Next Steps
oe 000 [o]e]

KANSAS STATE | canivie

W UNIVERSITY CollegeofEngineering

S. Hallerstede | Aarhus University | Teaching with Logika | FMTea, Milan, Italy, 10 September 2024 [13]

Discussion Next Steps
[o]e]

Context, Approach and Evolution Use and Significance of Slang and Logika Feedback
000

0000 00000 oe

Student Feedback

It was nice with a little mini—project to use some of the techniques learned in

the course

It was really nice to have exercises during the lecture and that [the teacher]
walked around to help us if we were struggling with some of the proofs. | really
liked that!

/v

S. Hallerstede | Aarhus University | Teaching with Logika | FMTea, Milan, Italy, 10 September 2024 [13]

Context, Approach and Evolution Use and Significance of Slang and Logika Feedback Discussion Next Steps
0000 00000 oe 000 [o]e]

Student Feedback

It was nice with a little mini—project to use some of the techniques learned in
the course

It was really nice to have exercises during the lecture and that [the teacher]
walked around to help us if we were struggling with some of the proofs. | really
liked that!

[The teacher] was really good at explaining the subjects and always made sure
that the class was understanding the theory

/v

S. Hallerstede | Aarhus University | Teaching with Logika | FMTea, Milan, Italy, 10 September 2024 [13]

Context, Approach and Evolution Use and Significance of Slang and Logika Feedback Discussion Next Steps
0000 00000 oe 000 [o]e]

Student Feedback

It was nice with a little mini—project to use some of the techniques learned in
the course

It was really nice to have exercises during the lecture and that [the teacher]

walked around to help us if we were struggling with some of the proofs. | really
liked that!

[The teacher] was really good at explaining the subjects and always made sure
that the class was understanding the theory

| am not sure if | am going to use what if have learned]

S. Hallerstede | Aarhus University | Teaching with Logika | FMTea, Milan, Italy, 10 September 2024 [13]

Context, Approach and Evolution Use and Significance of Slang and Logika Feedback Discussion Next Steps
0000 00000 [e]e] @00 [o]e]

Discussion

AARHUS
/ NP UnIvERSITY KANSAS STATE | carifice
DEPARTYENT OF FLECTRCAL AN COMPUTER NG U N IV E R § 1 T ¥ | CollegeofEngineering

S. Hallerstede | Aarhus University | Teaching with Logika | FMTea, Milan, Italy, 10 September 2024 [14]

Context, Approach and Evolution Use and Significance of Slang and Logika Feedback Discussion Next Steps
0000 00000 [e]e] oeo [o]e]

Discussion

A good user-friendly tool that the students are familiar with is essential
Students look for the benefit they get out of a course
They don’t have a strong background in maths and logics
It's better if taught material does not look like formal methods
Concerning proof, in-class attention by teacher is required
Using theorem provers directly did not work well
Notation and methodology should be as close to programming as possible
The students rate this course very high: 4.4 out of 5
(but response rate needs to be improved)
e Despite its title “Software Correctness” high number of inscriptions
(20 students)
® | ecture materials for the course are publicly available

(https://github.com/santoslab/software-correctness-course-materials)

AARHUS
/ NF UNIVERS) KANSAS STATE | carir
e NIVERSITY Colege

S. Hallerstede | Aarhus University | Teaching with Logika | FMTea, Milan, Italy, 10 September 2024 [15]

https://github.com/santoslab/software-correctness-course-materials

Context, Approach and Evolution
0000

Use and Significance of Slang and Logika Feedback

Discussion
00000 oo

ooe

Much More Material Available From Kansas State Unlver5|ty

S 301: Logical Foundations of =]
Programming

ropositional Logic Proofs

redicate Logic Translations

redicate Logic Proofs

lathematical Induction
itro to Programming Logic
lunctions and Loops

9.1. Functions

9.2. Recursion

9.3. Loops

9.4. Logika Facts

9.5. Summary.

Sequences, Globals, and

Functions and Loops > Loops.

KANsAs STaTE

fLECTRCAL D CoMPUTER PNGNEEENG U N IV E R S 1T Y

’ s

val xi: Z
valy: Z

Z.read()
Z.read()

[A lot of material available online

var sum: Z =@

var count: Z =@
//prove the invariant before the loop begins
Deduce(
1() by Premise, //from the "sum assignment
2 (by Premise, m the “count = 0" assignment
3(countx) by Algebrax(1, 2) //proved EXACTLY the loop invariant
)

while (count !=y) {
Invariant(
Modifies(sum, count),
ount * x

)

Deduce(
1(sum countsx) by Premise, //the loop invariant holds
//at the beginning of an iteration
)
sum = sum + x
Deduce(
1(sum 0ld(sum) + x) by Premise, //from "sum = sum + x" assignment
2 (old(sum) == countsx) by Premise, //lo0p invariant WAS true, but sul
3¢ sum == countxx + x) by Algebrax(1,2) //current knowledge without using
)
count = count + 1
Deduce(
1 Old(count)+ 1) by Premise, //from "count = count + 1" assigni
2 (Old(count)*x + x) by Premise, //from previous "sum = countkx + |
//but count has changed
3(sum (count-1)kx + x) by Algebrax(1,2),
4 (sum == countxx - x + x) by Algebrax(3),
5 (sum == countsx) by Algebrax(4) //o0p invariant holds at end of
)
}
G ke

College of Engineering

S. Hallerstede | Aarhus University | Teaching with Logika | FMTea, Milan, ltaly, 10 September 2024

Next Steps
[o]e]

[16]

https://textbooks.cs.ksu.edu/cis301/

Context, Approach and Evolution
0000

Use and Significance of Slang and Logika Feedback

Discussion
00000 oo

Next Steps
ooe [o]e]

Much More Material Available From Kansas State Unlver5|ty

S 301: Logical Foundations of =]

Programming

ropositional Logic Proofs

redicate Logic Translations
redicate Logic Proofs
lathematical Induction
itro to Programming Logic
lunctions and Loops

9.1. Functions

9.2. Recursion

9.3.Loops
9.4. Logika Facts

9.5. Summary.

Sequences, Globals, and

Functions and Loops > Loops.

KANsAs STaTE

UNIVERSITY

’ s

[A lot of material available online

(E.g.

val x:

Z = Z.read()
valy: Z = Z.read()

var sum: Z =@
var count: Z = @

//prove the invariant before the loop begins

Deduce(
) b o .
2 wrmse | https://textbooks.cs.ksu.edu/cis301/
3 () by Algebrax(1, 2)

)

while (count !=y) {
Invariant(
Modifies(sum, Cuunt).
sum == count x

)

Deduce(
1(sum == countx) by Premise, //the loop invariant holds
//at the beginning of an iteration
)
sum = sum + x
Deduce(
1(sum == Old(sum) + x) by Premise, //from "sum = sum + x" assignment
2 (old(sum) == countsx) by Premise, //lo0p invariant WAS true, but sul
3¢ sum == countxx + x) by Algebrax(1,2) //current knowledge without using
)
count = count + 1
Deduce(
1(count == Old(count)+ 1) by Premise, //from "count = count + 1" assigni
2 (sum == Old(count)*x + x) by Premise, //from previous "sum = countkx + |
//but count has changed
3(sum == (count-1)%x + x) by Algebrax(1,2),
4 (sum == countxx - x + x) by Algebrax(3),
5 (sum == countsx) by Algebrax(4) //o0p invariant holds at end of

CarlRIce
College of Engineering

S. Hallerstede | Aarhus University | Teaching with Logika | FMTea, Milan, Italy, 10 September 2024 [16]

https://textbooks.cs.ksu.edu/cis301/

Context, Approach and Evolution
0000

Use and Significance of Slang and Logika Feedback

Discussion
00000 oo

Next Steps
ooe [o]e]

Much More Material Available From Kansas State Unlver5|ty

S 301: Logical Foundations of =]

Programming

ropositional Logic Proofs

redicate Logic Translations

redicate Logic Proofs
lathematical Induction
itro to Programming Logic

lunctions and Loops

9.1. Functions

9.2. Recursion

9.3.Loops
9.4. Logika Facts

9.5. Summary.

Sequences, Globals, and

KANsAs STaTE

UNIVERSITY

Functions and Loops > Loops s, B
w@x 2= 2read) [A lot of material available online]

var sum: Z =@
var count: Z = @

//prove the invariant before the loop begins

(E.g.

Deduce(
) b o .
2 wrmse | https://textbooks.cs.ksu.edu/cis301/
3 () by Algebrax(1, 2)

)

while (count !=y) {
Invariant(
Modifies(sum, Cuunt).
sum == count x

Authors: Robby, John Hatcliff, Julie Thorton

)
Deduce(
1(sum == countxx) by Premise, //the loop invariant holds
//at the beginning of an iteration
)
sum = sum + x
Deduce(
1(sum == Old(sum) + x) by Premise, //from "sum = sum + x" assignment
2 (old(sum) == countsx) by Premise, //lo0p invariant WAS true, but sul
3¢ sum == countxx + x) by Algebrax(1,2) //current knowledge without using
)
count = count + 1
Deduce(
(count == Old(count)+ 1) by Premise, //from "count = count + 1" assigni
2 (sum == Old(count)x + x) by Premise, //from previous "sum = countkx + |
//but count has changed
3(sum == (count-1)%x + x) by Algebrax(1,2),
4 (sum == countxx - x + x) by Algebrax(3),
5 (sum == countxx) by Algebrax(4) //o0p invariant holds at end of
)
}
G ke

College of Engineering

S. Hallerstede | Aarhus University | Teaching with Logika | FMTea, Milan, Italy, 10 September 2024 [16]

https://textbooks.cs.ksu.edu/cis301/

Context, Approach and Evolution Use and Significance of Slang and Logika Feedback Discussion Next Steps
0000 00000 [e]e] ooe [o]e]

Much More Material Available From Kansas State Unlver5|ty

S 301: Logical Foundations of B Functions and Loops > Loops ’)
Programming . - -

val xi 2 = Z.read() A lot of material avallable online
valy: Z = Z.read()
var sum: Z = @
var count: Z = @

ropositional Logic Proofs R . Eg .
//prove the invariant before the loop begins
Ded

redicate Logic Translations Sl) by Premise,

2 (
redicate Logic Proofs) 3(

while (count !=y) {
Invariant(

HodHestsum, cowt), Authors: Robby, John Hatcliff, Julie Thorton

) by premice; https://textbooks.cs.ksu.edu/cis301/
y Algebrax(1, 2)

lathematical Induction

itro to Programming Logic

unctions and Loops)
9.1. Functions Deduce({
1(sum == countxx) by Premise, - y . .
92 Recursion , Visit John’s presentation on Logika
9.3.Loops 1
sum = sum + x
9.4, Logika Facts Iater tOdaY'
Deduce(
9.5. Summary 1(sum == Old(sum) + x) by Premise, //from "sum = sum + x" assignment
2 (0ld(sum) == countsx) by Premise, //00p invariant WAS true, but sul
3 (sum == countsx + x) by Algebra%(1,2) //current knowledge without using
Sequences, Globals, and)

count = count + 1

Deduce(
(count == Old(count)+ 1) by Premise, //from "count = count + 1" assigni
2 (sum == Old(count)x + x) by Premise, //from previous "sum = countkx + |
//but count has changed
3(sum == (count-1)%x + x) by Algebrax(1,2),
4 (sum == countxx - x + x) by Algebrax(3),
5 (sum == countxx) by Algebrax(4) //o0p invariant holds at end of

UNIVERSITY ColegeofEngincering

S. Hallerstede | Aarhus University | Teaching with Logika | FMTea, Milan, Italy, 10 September 2024 [16]

https://textbooks.cs.ksu.edu/cis301/

Context, Approach and Evolution Use and Significance of Slang and Logika Feedback Discussion Next Steps
0000 00000 [e]e] 000 e0

Next Steps

AARHUS
/ NP UnIvERSITY KANSAS STATE | carifice
DEPARTYENT OF FLECTRCAL AN COMPUTER NG U N IV E R § 1 T ¥ | CollegeofEngineering

S. Hallerstede | Aarhus University | Teaching with Logika | FMTea, Milan, Italy, 10 September 2024 [17]

Context, Approach and Evolution Use and Significance of Slang and Logika Feedback Discussion Next Steps
0000 00000 [e]e] 000 oe

Next Steps

Extend the number of examples

Improve support for self-study

improve presentation of more advanced verification

Improve presentation of proof methodology

Rely on discussion and feedback from students for improvements
The course evolves gradually — material, tool and students change

AARHUS
/ NF UNvE KANSAS STATE | carifice
e c UNIVERSITY

College of Engineering

S. Hallerstede | Aarhus University | Teaching with Logika | FMTea, Milan, Italy, 10 September 2024 [18]

	Context, Approach and Evolution
	Use and Significance of Slang and Logika
	Feedback
	Discussion
	Next Steps

