
Checking contracts in Event-B
Reporting the introduction and the use of

automated tools for verifying software-based
systems in higher education

Dominique Méry
Telecom Nancy,Université de Lorraine

dominique.mery@loria.fr

FMTea in Milan, Italy, September 10, 2024

FMTea in Milan, Italy, September 10, 2024 (Dominique Méry) 1/37

Summary

1 Introduction

2 Motivating by Programming Cases
Detecting overflows in computations
Computing the velocity of an aircraft on the ground
Tracking bugs in C codes

3 Programming by contract

4 Floyd to Hoare

5 Conclusion

FMTea in Milan, Italy, September 10, 2024 (Dominique Méry) 2/37

Current Summary

1 Introduction

2 Motivating by Programming Cases
Detecting overflows in computations
Computing the velocity of an aircraft on the ground
Tracking bugs in C codes

3 Programming by contract

4 Floyd to Hoare

5 Conclusion

FMTea in Milan, Italy, September 10, 2024 (Dominique Méry) 3/37

Objectives

modelling, verifying, validating

Lectures on modelling, designing, verifying and validating software-based
systems taught in the MsC Computer Science at Faculty of Science of
the University of Lorraine and in the Computer Engineering Master of the
School Telecom Nancy of the University of Lorraine.

The epistemological concepts were given using the classical
blackboard and chalk and progressively we have moved to integrate
automated verification techniques and tools.

Group of 50 students in +4 for regular students from a highly
competive selection . . .

Group of 20 students in +4 for apprentice students (two months at
school and two months at company)

Idea

To introduce progressively the concepts of verification using the
Floyd-Hoare principle and to show how students can develop a tool for
their pet programming language.

FMTea in Milan, Italy, September 10, 2024 (Dominique Méry) 3/37

Objectives

modelling, verifying, validating

Lectures on modelling, designing, verifying and validating software-based
systems taught in the MsC Computer Science at Faculty of Science of
the University of Lorraine and in the Computer Engineering Master of the
School Telecom Nancy of the University of Lorraine.

The epistemological concepts were given using the classical
blackboard and chalk and progressively we have moved to integrate
automated verification techniques and tools.

Group of 50 students in +4 for regular students from a highly
competive selection . . .

Group of 20 students in +4 for apprentice students (two months at
school and two months at company)

Idea

To introduce progressively the concepts of verification using the
Floyd-Hoare principle and to show how students can develop a tool for
their pet programming language.
FMTea in Milan, Italy, September 10, 2024 (Dominique Méry) 3/37

Ingredients for lectures

Our main reference is the work of Patrick and Radhia Cousot
on induction principles for program properties.

Tools are available for teaching as Frama-c, Rodin, TLA
Toolbox, Z3, . . . but have a learning time.

Main concepts to be acquired:
▶ Abstraction
▶ Induction
▶ Fixed-point Theory
▶ Mathemarical notations for set theory
▶ Logics and mechanized reasoning
▶ Computability
▶ Transition systems

FMTea in Milan, Italy, September 10, 2024 (Dominique Méry) 4/37

Ingredients for lectures

Our main reference is the work of Patrick and Radhia Cousot
on induction principles for program properties.

Tools are available for teaching as Frama-c, Rodin, TLA
Toolbox, Z3, . . . but have a learning time.

Main concepts to be acquired:
▶ Abstraction
▶ Induction
▶ Fixed-point Theory
▶ Mathemarical notations for set theory
▶ Logics and mechanized reasoning
▶ Computability
▶ Transition systems

FMTea in Milan, Italy, September 10, 2024 (Dominique Méry) 4/37

Ingredients for lectures

Our main reference is the work of Patrick and Radhia Cousot
on induction principles for program properties.

Tools are available for teaching as Frama-c, Rodin, TLA
Toolbox, Z3, . . . but have a learning time.

Main concepts to be acquired:

▶ Abstraction
▶ Induction
▶ Fixed-point Theory
▶ Mathemarical notations for set theory
▶ Logics and mechanized reasoning
▶ Computability
▶ Transition systems

FMTea in Milan, Italy, September 10, 2024 (Dominique Méry) 4/37

Ingredients for lectures

Our main reference is the work of Patrick and Radhia Cousot
on induction principles for program properties.

Tools are available for teaching as Frama-c, Rodin, TLA
Toolbox, Z3, . . . but have a learning time.

Main concepts to be acquired:
▶ Abstraction

▶ Induction
▶ Fixed-point Theory
▶ Mathemarical notations for set theory
▶ Logics and mechanized reasoning
▶ Computability
▶ Transition systems

FMTea in Milan, Italy, September 10, 2024 (Dominique Méry) 4/37

Ingredients for lectures

Our main reference is the work of Patrick and Radhia Cousot
on induction principles for program properties.

Tools are available for teaching as Frama-c, Rodin, TLA
Toolbox, Z3, . . . but have a learning time.

Main concepts to be acquired:
▶ Abstraction
▶ Induction

▶ Fixed-point Theory
▶ Mathemarical notations for set theory
▶ Logics and mechanized reasoning
▶ Computability
▶ Transition systems

FMTea in Milan, Italy, September 10, 2024 (Dominique Méry) 4/37

Ingredients for lectures

Our main reference is the work of Patrick and Radhia Cousot
on induction principles for program properties.

Tools are available for teaching as Frama-c, Rodin, TLA
Toolbox, Z3, . . . but have a learning time.

Main concepts to be acquired:
▶ Abstraction
▶ Induction
▶ Fixed-point Theory

▶ Mathemarical notations for set theory
▶ Logics and mechanized reasoning
▶ Computability
▶ Transition systems

FMTea in Milan, Italy, September 10, 2024 (Dominique Méry) 4/37

Ingredients for lectures

Our main reference is the work of Patrick and Radhia Cousot
on induction principles for program properties.

Tools are available for teaching as Frama-c, Rodin, TLA
Toolbox, Z3, . . . but have a learning time.

Main concepts to be acquired:
▶ Abstraction
▶ Induction
▶ Fixed-point Theory
▶ Mathemarical notations for set theory

▶ Logics and mechanized reasoning
▶ Computability
▶ Transition systems

FMTea in Milan, Italy, September 10, 2024 (Dominique Méry) 4/37

Ingredients for lectures

Our main reference is the work of Patrick and Radhia Cousot
on induction principles for program properties.

Tools are available for teaching as Frama-c, Rodin, TLA
Toolbox, Z3, . . . but have a learning time.

Main concepts to be acquired:
▶ Abstraction
▶ Induction
▶ Fixed-point Theory
▶ Mathemarical notations for set theory
▶ Logics and mechanized reasoning

▶ Computability
▶ Transition systems

FMTea in Milan, Italy, September 10, 2024 (Dominique Méry) 4/37

Ingredients for lectures

Our main reference is the work of Patrick and Radhia Cousot
on induction principles for program properties.

Tools are available for teaching as Frama-c, Rodin, TLA
Toolbox, Z3, . . . but have a learning time.

Main concepts to be acquired:
▶ Abstraction
▶ Induction
▶ Fixed-point Theory
▶ Mathemarical notations for set theory
▶ Logics and mechanized reasoning
▶ Computability

▶ Transition systems

FMTea in Milan, Italy, September 10, 2024 (Dominique Méry) 4/37

Ingredients for lectures

Our main reference is the work of Patrick and Radhia Cousot
on induction principles for program properties.

Tools are available for teaching as Frama-c, Rodin, TLA
Toolbox, Z3, . . . but have a learning time.

Main concepts to be acquired:
▶ Abstraction
▶ Induction
▶ Fixed-point Theory
▶ Mathemarical notations for set theory
▶ Logics and mechanized reasoning
▶ Computability
▶ Transition systems

FMTea in Milan, Italy, September 10, 2024 (Dominique Méry) 4/37

Ingredients for lectures

Our main reference is the work of Patrick and Radhia Cousot
on induction principles for program properties.

Tools are available for teaching as Frama-c, Rodin, TLA
Toolbox, Z3, . . . but have a learning time.

Main concepts to be acquired:
▶ Abstraction
▶ Induction
▶ Fixed-point Theory
▶ Mathemarical notations for set theory
▶ Logics and mechanized reasoning
▶ Computability
▶ Transition systems

FMTea in Milan, Italy, September 10, 2024 (Dominique Méry) 4/37

Ingredients for lectures

Our main reference is the work of Patrick and Radhia Cousot
on induction principles for program properties.

Tools are available for teaching as Frama-c, Rodin, TLA
Toolbox, Z3, . . . but have a learning time.

Main concepts to be acquired:
▶ Abstraction
▶ Induction
▶ Fixed-point Theory
▶ Mathemarical notations for set theory
▶ Logics and mechanized reasoning
▶ Computability
▶ Transition systems

FMTea in Milan, Italy, September 10, 2024 (Dominique Méry) 4/37

First steps in FMTea. . . academic year 1983/1984

Course Semantics and Logics for Programs: lectures 26 h (13
sessions 2 h) and tutorial 32,5 h (13 sessions 2h30)

Course Logics for concepts of logics: lectures 26 h (13 sessions 2 h)
and tutorial 32,5 h (13 sessions 2h30)

Derivation of proofs using the PAP tool Pen And Paper

Main tools are pen and paper !

FMTea in Milan, Italy, September 10, 2024 (Dominique Méry) 5/37

First steps in FMTea. . . academic year 1983/1984

Course Semantics and Logics for Programs: lectures 26 h (13
sessions 2 h) and tutorial 32,5 h (13 sessions 2h30)

Course Logics for concepts of logics: lectures 26 h (13 sessions 2 h)
and tutorial 32,5 h (13 sessions 2h30)

Derivation of proofs using the PAP tool Pen And Paper

Main tools are pen and paper !

FMTea in Milan, Italy, September 10, 2024 (Dominique Méry) 5/37

First steps in FMTea. . . academic year 1983/1984

Course Semantics and Logics for Programs: lectures 26 h (13
sessions 2 h) and tutorial 32,5 h (13 sessions 2h30)

Course Logics for concepts of logics: lectures 26 h (13 sessions 2 h)
and tutorial 32,5 h (13 sessions 2h30)

Derivation of proofs using the PAP tool

Pen And Paper

Main tools are pen and paper !

FMTea in Milan, Italy, September 10, 2024 (Dominique Méry) 5/37

First steps in FMTea. . . academic year 1983/1984

Course Semantics and Logics for Programs: lectures 26 h (13
sessions 2 h) and tutorial 32,5 h (13 sessions 2h30)

Course Logics for concepts of logics: lectures 26 h (13 sessions 2 h)
and tutorial 32,5 h (13 sessions 2h30)

Derivation of proofs using the PAP tool Pen And Paper

Main tools are pen and paper !

FMTea in Milan, Italy, September 10, 2024 (Dominique Méry) 5/37

First steps in FMTea. . . academic year 1983/1984

Course Semantics and Logics for Programs: lectures 26 h (13
sessions 2 h) and tutorial 32,5 h (13 sessions 2h30)

Course Logics for concepts of logics: lectures 26 h (13 sessions 2 h)
and tutorial 32,5 h (13 sessions 2h30)

Derivation of proofs using the PAP tool Pen And Paper

Main tools are pen and paper !

FMTea in Milan, Italy, September 10, 2024 (Dominique Méry) 5/37

Teaching Verification Techniques in 1983/1984

� Third Year University Degree (List of courses)

FMTea in Milan, Italy, September 10, 2024 (Dominique Méry) 6/37

Teaching Verification Techniques in 1983/1984

� Fourth Year University Degree (List of courses)

FMTea in Milan, Italy, September 10, 2024 (Dominique Méry) 7/37

Teaching Verification Techniques in 1983/1984

� Course Semantics and Logics for Programs

FMTea in Milan, Italy, September 10, 2024 (Dominique Méry) 8/37

From PAP (Pen And Paper) to FIDE (Formal IDE)

(1983-1993) Fruitful period for proof tools as Coq, Isabelle, . . .

The temporal framework and model checking techniques

The B proposal and the use of proof assistants

Experiment with techniques and tools
▶ TLA tools
▶ Rodin, Atelier-B
▶ PAT
▶ PRISM
▶ Z3, CVC, . . .
▶ Frama-c
▶ DAFNY

FMTea in Milan, Italy, September 10, 2024 (Dominique Méry) 9/37

Sketch

The main steps of our method:

FORMALISATION Expression of the contract as assertions defined
in an Event-Bcontext.

TRANSLATION Translation of annotations as elements of the
invariant and of the basic computation steps between two successive
labels as events.

M-ALGORITHM

C-CONTRACT pre/post specification

algorithm

formalisation

translation

fulfilmentSEES

FMTea in Milan, Italy, September 10, 2024 (Dominique Méry) 10/37

FMTea in Milan, Italy, September 10, 2024 (Dominique Méry) 11/37

Syn

Current Summary

1 Introduction

2 Motivating by Programming Cases
Detecting overflows in computations
Computing the velocity of an aircraft on the ground
Tracking bugs in C codes

3 Programming by contract

4 Floyd to Hoare

5 Conclusion

FMTea in Milan, Italy, September 10, 2024 (Dominique Méry) 11/37

Current Summary

1 Introduction

2 Motivating by Programming Cases
Detecting overflows in computations
Computing the velocity of an aircraft on the ground
Tracking bugs in C codes

3 Programming by contract

4 Floyd to Hoare

5 Conclusion

FMTea in Milan, Italy, September 10, 2024 (Dominique Méry) 11/37

Detecting overflows of computations

Listing 1: Function average

#inc lude <s t d i o . h>
#inc lude < l i m i t s . h>
i n t a v e r a g e (i n t a , i n t b)
{

return ((a+b) / 2) ;
}

i n t main ()
{

i n t x , y ;
x=INT MAX ; y=INT MAX ;
p r i n t f (” Average f o r %d and %d i s %d\n” , x , y ,

a v e r a g e (x , y)) ;
return 0 ;

}

FMTea in Milan, Italy, September 10, 2024 (Dominique Méry) 12/37

Execution

Execution produces a result

Average for 2147483647 and 2147483647 is -1

Using frama-c produces a required annotation

int average(int a, int b)

{

int __retres;

/*@ assert rte: signed_overflow: -2147483648 <= a + b; */

/*@ assert rte: signed_overflow: a + b <= 2147483647; */

__retres = (a + b) / 2;

return __retres;

}

FMTea in Milan, Italy, September 10, 2024 (Dominique Méry) 13/37

Execution

Execution produces a result

Average for 2147483647 and 2147483647 is -1

Using frama-c produces a required annotation

int average(int a, int b)

{

int __retres;

/*@ assert rte: signed_overflow: -2147483648 <= a + b; */

/*@ assert rte: signed_overflow: a + b <= 2147483647; */

__retres = (a + b) / 2;

return __retres;

}

FMTea in Milan, Italy, September 10, 2024 (Dominique Méry) 13/37

Annotated Example 1

Listing 2: Function average.....

#include <stdio.h>
#include <limits.h>
/*@ requires 0 <= a;

requires a <= INT_MAX ;
requires 0 <= b;
requires b <= INT_MAX ;
requires 0 <= a+b;
requires a+b <= INT_MAX ;
ensures \result <= INT_MAX;

*/
int average(int a,int b)
{

return ((a+b)/2);
}

int main()
{

int x,y;
x=INT_MAX / 2;y=INT_MAX / 2;
// printf (" Average for %d and %d is %d\n",x,y,
//);
return average(x,y);

}

FMTea in Milan, Italy, September 10, 2024 (Dominique Méry) 14/37

Current Summary

1 Introduction

2 Motivating by Programming Cases
Detecting overflows in computations
Computing the velocity of an aircraft on the ground
Tracking bugs in C codes

3 Programming by contract

4 Floyd to Hoare

5 Conclusion

FMTea in Milan, Italy, September 10, 2024 (Dominique Méry) 15/37

Nose Gear Velocity

Estimated ground velocity of the aircraft should be available only if
it is within 3 km/hr of the true velocity at some moment within
past 3 secondsFMTea in Milan, Italy, September 10, 2024 (Dominique Méry) 16/37

Characterization of a System (I)

NG velocity system:

▶ Hardware:
• Electro-mechanical sensor : detects rotations
• Two 16-bit counters: Rotation counter, Milliseconds counter
• Interrupt service routine: updates rotation counter and stores current time.

▶ Software:
• Real-time operating system: invokes update function every 500 ms
• 16-bit global variable: for recording rotation counter update time
• An update function: estimates ground velocity of the aircraft.

Input data available to the system:

▶ time: in milliseconds
▶ distance: in inches

▶ rotation angle: in degrees

Specified system performs velocity estimations in imperial unit system

Note: expressed functional requirement is in SI unit system (km/hr).

FMTea in Milan, Italy, September 10, 2024 (Dominique Méry) 17/37

Characterization of a System (II) cont.

What are the main properties to consider for formalization?

Two different types of data:

▶ counters with modulo semantics

▶ non-negative values for time, distance, and velocity

Two dimensions: distance and time

Many units: distance (inches, kilometers, miles), time (milliseconds,
hours), velocity (kph, mph)

And interaction among components

How should we model?

Designer needs to consider units and conversions between them to manipulate
the model

One approach: Model units as sets, and conversions as constructed types –
projections.

Example:

1 estimateV elocity ∈ MILES × HOURS → MPH
2 mphTokph ∈ MPH ↣→ KPH

FMTea in Milan, Italy, September 10, 2024 (Dominique Méry) 18/37

Sample Velocity Estimation

FMTea in Milan, Italy, September 10, 2024 (Dominique Méry) 19/37

Safety Property Run Time Error (RTE)

Safety Property

Storing the number of NGClick in a n-bit variable VNGClick

Integers are denoted by the set Int and is simply defined by the
interval Int=̂INT MIN..INT MAX.

Safety requirement:
The value of VNGClick is always in the range of implementation Int
or equivalently V NGClick ∈ Int

Length = π ∗ diameter ∗ V NGClick (mathematical property)

Length ≤ 6000 (domain property)

π ∗ diameter ∗ V NGClick ≤ 6000

V NGClick ≤ 6000/(π ∗ diameter)
if n=8, then 27 − 1 = 127 and 6000/(π ∗ [22, inch]) = 6000/(π ∗ 55, 88) =
6000/(3, 24 ∗ [55, 88, cm]) = 6000/(3, 24 ∗ 0.5588) ≈ 3419 and the condition of safety can not be satisfied in
any situation.

if n=16, then 215 − 1 = 65535 and 6000/(π ∗ [22, inch]) ≈ 3419 and the condition of safety can be satisfied in
any situation since 3419 ≤= 65535 .

FMTea in Milan, Italy, September 10, 2024 (Dominique Méry) 20/37

Safety Property Run Time Error (RTE)

Safety Property

Storing the number of NGClick in a n-bit variable VNGClick

Integers are denoted by the set Int and is simply defined by the
interval Int=̂INT MIN..INT MAX.

Safety requirement:
The value of VNGClick is always in the range of implementation Int
or equivalently V NGClick ∈ Int

Length = π ∗ diameter ∗ V NGClick (mathematical property)

Length ≤ 6000 (domain property)

π ∗ diameter ∗ V NGClick ≤ 6000

V NGClick ≤ 6000/(π ∗ diameter)
if n=8, then 27 − 1 = 127 and 6000/(π ∗ [22, inch]) = 6000/(π ∗ 55, 88) =
6000/(3, 24 ∗ [55, 88, cm]) = 6000/(3, 24 ∗ 0.5588) ≈ 3419 and the condition of safety can not be satisfied in
any situation.

if n=16, then 215 − 1 = 65535 and 6000/(π ∗ [22, inch]) ≈ 3419 and the condition of safety can be satisfied in
any situation since 3419 ≤= 65535 .

FMTea in Milan, Italy, September 10, 2024 (Dominique Méry) 20/37

Safety Property Run Time Error (RTE)

Safety Property

Storing the number of NGClick in a n-bit variable VNGClick

Integers are denoted by the set Int and is simply defined by the
interval Int=̂INT MIN..INT MAX.

Safety requirement:
The value of VNGClick is always in the range of implementation Int
or equivalently V NGClick ∈ Int

Length = π ∗ diameter ∗ V NGClick (mathematical property)

Length ≤ 6000 (domain property)

π ∗ diameter ∗ V NGClick ≤ 6000

V NGClick ≤ 6000/(π ∗ diameter)
if n=8, then 27 − 1 = 127 and 6000/(π ∗ [22, inch]) = 6000/(π ∗ 55, 88) =
6000/(3, 24 ∗ [55, 88, cm]) = 6000/(3, 24 ∗ 0.5588) ≈ 3419 and the condition of safety can not be satisfied in
any situation.

if n=16, then 215 − 1 = 65535 and 6000/(π ∗ [22, inch]) ≈ 3419 and the condition of safety can be satisfied in
any situation since 3419 ≤= 65535 .

FMTea in Milan, Italy, September 10, 2024 (Dominique Méry) 20/37

Safety Property Run Time Error (RTE)

Safety Property

Storing the number of NGClick in a n-bit variable VNGClick

Integers are denoted by the set Int and is simply defined by the
interval Int=̂INT MIN..INT MAX.

Safety requirement:
The value of VNGClick is always in the range of implementation Int
or equivalently V NGClick ∈ Int

RTE V NGClick : 0 ≤ vNGClick ≤ INT MAX (1)

The current value of VNGClick is always bounded by the two values
0 and INT MAX.

FMTea in Milan, Italy, September 10, 2024 (Dominique Méry) 21/37

Current Summary

1 Introduction

2 Motivating by Programming Cases
Detecting overflows in computations
Computing the velocity of an aircraft on the ground
Tracking bugs in C codes

3 Programming by contract

4 Floyd to Hoare

5 Conclusion

FMTea in Milan, Italy, September 10, 2024 (Dominique Méry) 22/37

bug0.c

Listing 3: Bug bug0

#i n c l u d e <s t d i o . h>
#i n c l u d e <s t d l i b . h>
#i n c l u d e <t ime . h>

i n t main () {
i n t x , y ;
// Seed the random number g e n e r a t o r w i th the c u r r e n t t ime
s rand (t ime (NULL)) ;
// Genera te a random number between 1 and 100
x = rand () % 100 + 1 ;
// Perform some c a l c u l a t i o n s
y = x / (100 − x) ;
p r i n t f (” Re s u l t : %d\n” , y) ;
r e t u r n 0 ;

}

FMTea in Milan, Italy, September 10, 2024 (Dominique Méry) 23/37

bug00.c

Listing 4: Bug bug00
// Heisenbug
#i n c l u d e <s t d i o . h>
#i n c l u d e <s t d l i b . h>
#i n c l u d e <t ime . h>

i n t main () {
i n t x , y , i =0;

f o r (i = 0 ; i <= 100000; i++) {
// Seed the random number g e n e r a t o r w i th the c u r r e n t t ime
s rand (t ime (NULL)) ;

// Genera te a random number between 1 and 100
x = rand () % 100 + 1 ;

p r i n t f (” Re s u l t : x= %d\n” , x) ;
// Perform some c a l c u l a t i o n s
y = x / (100 − x) ;

p r i n t f (” Re s u l t : i=%d %d\n” , i , y) ;
}

r e t u r n 0 ;
}

FMTea in Milan, Italy, September 10, 2024 (Dominique Méry) 24/37

bug000.c

Listing 5: Bug bug000
// Heisenbug
#i n c l u d e <s t d i o . h>
#i n c l u d e <s t d l i b . h>
#i n c l u d e <t ime . h>

i n t main () {
i n t x , y , i =0;

f o r (i = 0 ; i <= 100 ; i++) {
// Seed the random number g e n e r a t o r w i th the c u r r e n t t ime
s rand (t ime (NULL)+ i) ;

// Genera te a random number between 1 and 100
x = rand () % 100 + 1 ;

p r i n t f (” Re s u l t : x= %d\n” , x) ;
// Perform some c a l c u l a t i o n s
y = x / (100 − x) ;

p r i n t f (” Re s u l t : i=%d %d\n” , i , y) ;
}

r e t u r n 0 ;
}

FMTea in Milan, Italy, September 10, 2024 (Dominique Méry) 25/37

Current Summary

1 Introduction

2 Motivating by Programming Cases
Detecting overflows in computations
Computing the velocity of an aircraft on the ground
Tracking bugs in C codes

3 Programming by contract

4 Floyd to Hoare

5 Conclusion

FMTea in Milan, Italy, September 10, 2024 (Dominique Méry) 26/37

Verifying program correctness

A program P satisfies a (pre,post) contract:

P transforms a variable v from initial values v0 and produces a final

value vf : v0
P−→ vf

v0 satisfies pre: pre(v0) and vf satisfies post : post(v0, vf)

pre(v0) ∧ v0
P−→ vf ⇒ post(v0, vf)

D est le domaine RTE de V

requires pre(v0)
ensures post(v0, vf)
variables X

begin
0 : P0(v0, v)
instruction0
. . .
i : Pi(v0, v)
. . .
instructionf−1

f : Pf (v0, v)
end

pre(v0) ∧ v = v0 ⇒ P0(v0, v)

pre(v0) ∧ Pf (v0, v) ⇒ post(v0, v)

For any pair of labelsℓ, ℓ′

such that ℓ −→ ℓ′, one verifies that,
pour any values v, v′ ∈ Memory (

pre(v0) ∧ Pℓ(v0, v))
∧condℓ,ℓ′(v) ∧ v′ = fℓ,ℓ′(v)

)
⇒ Pℓ′(v0, v

′)

,

FMTea in Milan, Italy, September 10, 2024 (Dominique Méry) 26/37

Verifying program correctness

A program P satisfies a (pre,post) contract:

P transforms a variable v from initial values v0 and produces a final

value vf : v0
P−→ vf

v0 satisfies pre: pre(v0) and vf satisfies post : post(v0, vf)

pre(v0) ∧ v0
P−→ vf ⇒ post(v0, vf)

D est le domaine RTE de V

requires pre(v0)
ensures post(v0, vf)
variables X

begin
0 : P0(v0, v)
instruction0
. . .
i : Pi(v0, v)
. . .
instructionf−1

f : Pf (v0, v)
end

pre(v0) ∧ v = v0 ⇒ P0(v0, v)

pre(v0) ∧ Pf (v0, v) ⇒ post(v0, v)

For any pair of labelsℓ, ℓ′

such that ℓ −→ ℓ′, one verifies that,
pour any values v, v′ ∈ Memory (

pre(v0) ∧ Pℓ(v0, v))
∧condℓ,ℓ′(v) ∧ v′ = fℓ,ℓ′(v)

)
⇒ Pℓ′(v0, v

′)

,

FMTea in Milan, Italy, September 10, 2024 (Dominique Méry) 26/37

Contracts - Verification Conditions

contract P
variables v
requires pre(v0)
ensures post(v0, vf)

begin
0 : P0(v0, v)
S0
. . .
i : Pi(v0, v)
. . .
Sf−1

f : Pf (v0, v)
end

Verification conditions are listed as follows:

(initialisation)
pre(v0) ∧ v = v0 ⇒ P0(v0, v)

(finalisation)
pre(v0) ∧ Pf (v0, v) ⇒ post(v0, v)

(induction)
For each labels pair ℓ, ℓ′

such that ℓ −→ ℓ′, one checks that,
for any value v, v′ ∈ Memory (

pre(v0) ∧ Pℓ(v0, v))
∧condℓ,ℓ′(v) ∧ v′ = fℓ,ℓ′(v)

)
⇒ Pℓ′(v0, v

′)

,

Three kinds of verification conditions should be
checked and we justify the method in the full ver-
sion..

FMTea in Milan, Italy, September 10, 2024 (Dominique Méry) 27/37

Contracts - Verification Conditions

contract P
variables v
requires pre(v0)
ensures post(v0, vf)

begin
0 : P0(v0, v)
S0
. . .
i : Pi(v0, v)
. . .
Sf−1

f : Pf (v0, v)
end

Verification conditions are listed as follows:

(initialisation)
pre(v0) ∧ v = v0 ⇒ P0(v0, v)

(finalisation)
pre(v0) ∧ Pf (v0, v) ⇒ post(v0, v)

(induction)
For each labels pair ℓ, ℓ′

such that ℓ −→ ℓ′, one checks that,
for any value v, v′ ∈ Memory (

pre(v0) ∧ Pℓ(v0, v))
∧condℓ,ℓ′(v) ∧ v′ = fℓ,ℓ′(v)

)
⇒ Pℓ′(v0, v

′)

,

Three kinds of verification conditions should be
checked and we justify the method in the full ver-
sion..

FMTea in Milan, Italy, September 10, 2024 (Dominique Méry) 27/37

From PAP to Rodin . . .

MACHINE M
SEES C0
VARIABLES

v, pc
INVARIANTS

typing : v ∈ D
control : pc ∈ L
. . .
atℓ : pc = ℓ ⇒ Pℓ(v0, v)
. . .

th1 : pre(v0) ∧ v = v0 ⇒ P0(v0, v)
th2 : pre(v0) ∧ Pf (v0, v)

⇒ post(v0, v)
. . .
END
. . .
END

MACHINE M
EVENTS

INITIALISATION
BEGIN

(pc, v) : |
(

pc′ = l0 ∧ v′ = v0
∧pre(v0)

)
END

. . .
e(ℓ, ℓ′)
WHEN
pc = ℓ
condℓ,ℓ′(v)

THEN
pc := ℓ′

v := fℓ,ℓ′(v)
END

. . .
END

FMTea in Milan, Italy, September 10, 2024 (Dominique Méry) 28/37

From PAP to Rodin . . .

MACHINE M
SEES C0
VARIABLES

v, pc
INVARIANTS

typing : v ∈ D
control : pc ∈ L
. . .
atℓ : pc = ℓ ⇒ Pℓ(v0, v)
. . .

th1 : pre(v0) ∧ v = v0 ⇒ P0(v0, v)
th2 : pre(v0) ∧ Pf (v0, v)

⇒ post(v0, v)
. . .
END
. . .
END

MACHINE M
EVENTS

INITIALISATION
BEGIN

(pc, v) : |
(

pc′ = l0 ∧ v′ = v0
∧pre(v0)

)
END

. . .
e(ℓ, ℓ′)
WHEN
pc = ℓ
condℓ,ℓ′(v)

THEN
pc := ℓ′

v := fℓ,ℓ′(v)
END

. . .
END

FMTea in Milan, Italy, September 10, 2024 (Dominique Méry) 28/37

From PAP to Rodin . . .

MACHINE M
SEES C0
VARIABLES

v, pc
INVARIANTS

typing : v ∈ D
control : pc ∈ L
. . .
atℓ : pc = ℓ ⇒ Pℓ(v0, v)
. . .

th1 : pre(v0) ∧ v = v0 ⇒ P0(v0, v)
th2 : pre(v0) ∧ Pf (v0, v)

⇒ post(v0, v)
. . .
END
. . .
END

MACHINE M
EVENTS

INITIALISATION
BEGIN

(pc, v) : |
(

pc′ = l0 ∧ v′ = v0
∧pre(v0)

)
END

. . .
e(ℓ, ℓ′)
WHEN
pc = ℓ
condℓ,ℓ′(v)

THEN
pc := ℓ′

v := fℓ,ℓ′(v)
END

. . .
END

FMTea in Milan, Italy, September 10, 2024 (Dominique Méry) 28/37

Technical problems for students

(Induction Principle (I))

A property S(z0, z) is a safety for an annotated program P if, and only if,
there exists a property I(z0, z) satisfying:

1 ∀z0, z ∈ L × D.init(z0) ∧ z = z0⇒ I(z0, z)

2 ∀z0, z, z′ ∈ L × D.init(z0) ∧ I(z0, z) ∧ (z −→
P

z′)⇒ I(z0, z′)

3 ∀z0, z ∈ L × D.init(z0) ∧ I(z0, z)⇒ S(z0, z)

(Induction Principle (II))

A property S(ℓ0, x0, ℓ, x) is a safety property for an annotated program P
if, and only if, there exists a property I(ℓ0, x0, ℓ, x) satisfying:

1 ∀ℓ0,∈ L, x0 ∈ D.ℓ0 ∈ L0∧pre(x0)∧x = x0∧pc = ℓ0⇒J(ℓ0, x0, ℓ, x)

2 ∀ℓ, ℓ′ ∈ L, x, x0 ∈ D.ℓ0 ∈ L0 ∧ pre(x0) ∧ J(ℓ0, x0, ℓ, x) ∧
BA(e(ℓ, ℓ′),)(ℓ, x, ℓ′, x′)⇒ J(ℓ0, x0, ℓ′, x′)

3 ∀ℓ0, ℓ ∈ L, x0, x ∈ D.pre(x0) ∧ ℓ0 ∈
L0 ∧ J(ℓ0, x0, ℓ, x)⇒ S(ℓ0, x0, ℓ, x)

FMTea in Milan, Italy, September 10, 2024 (Dominique Méry) 29/37

Technical problems for students

(Induction Principle (II))

A property S(ℓ0, x0, ℓ, x) is a safety property for an annotated program P
if, and only if, there exists a property I(ℓ0, x0, ℓ, x) satisfying:

1 ∀ℓ0,∈ L, x0 ∈ D.ℓ0 ∈ L0∧pre(x0)∧x = x0∧pc = ℓ0⇒J(ℓ0, x0, ℓ, x)

2 ∀ℓ, ℓ′ ∈ L, x, x0 ∈ D.ℓ0 ∈ L0 ∧ pre(x0) ∧ J(ℓ0, x0, ℓ, x) ∧
BA(e(ℓ, ℓ′),)(ℓ, x, ℓ′, x′)⇒ J(ℓ0, x0, ℓ′, x′)

3 ∀ℓ0, ℓ ∈ L, x0, x ∈ D.pre(x0) ∧ ℓ0 ∈
L0 ∧ J(ℓ0, x0, ℓ, x)⇒ S(ℓ0, x0, ℓ, x)

(Induction Principle (III))

A property S(x0, ℓ, x) is a safety for an annotated program P with one
entry point if, and only if, there exists a property I(x0, ℓ, x) satisfying:

1 ∀x0 ∈ D.pre(x0) ∧ x = x0 ∧ ℓ = ℓ0⇒ J(x0, ℓ, x)

2 ∀ℓ, ℓ′ ∈ L, x, x0 ∈
D.pre(x0) ∧ J(x0, ℓ, x) ∧BA(e(ℓ, ℓ′),)(ℓ, x, ℓ′, x′)⇒ J(x0, ℓ′, x′)

3 ∀ℓ ∈ L, x0, x ∈ D.pre(x0) ∧ J(x0, ℓ, x)⇒ S(x0, ℓ, x)
FMTea in Milan, Italy, September 10, 2024 (Dominique Méry) 30/37

Soundness of the translation

(Soundness of the method)

If the initialisation init, the generalisation gen and the step induction are
proved to be correct by the Rodin platform, the property S(x0, ℓ, x) is a
correct safety property for the program P. In particular, one can handle
the partial correctness and the run time error safety properties.

Contract and verification conditions are translated into Event-B and
are discharged by Rodin and its provers.

Verification conditions are derived from Floyd’s method.

Annotation as assertion

FMTea in Milan, Italy, September 10, 2024 (Dominique Méry) 31/37

Soundness of the translation

(Soundness of the method)

If the initialisation init, the generalisation gen and the step induction are
proved to be correct by the Rodin platform, the property S(x0, ℓ, x) is a
correct safety property for the program P. In particular, one can handle
the partial correctness and the run time error safety properties.

Contract and verification conditions are translated into Event-B and
are discharged by Rodin and its provers.

Verification conditions are derived from Floyd’s method.

Annotation as assertion

FMTea in Milan, Italy, September 10, 2024 (Dominique Méry) 31/37

A short example

contract SIMPLE
variables x
requires x0 ∈ N
ensures xf = 0
begin
ℓ0 : {0 ≤ x ≤ x0 ∧ x0 ∈ N}
while 0 < x do
ℓ1 : {0 < x ∧ x ≤ x0 ∧ x0 ∈ N}
x := x− 1;

od
ℓ2 : {x = 0}end

Event Init
then
act1 : x := x0
act2 : l := l0

Event el0l1
when
grd1 : l = l0
grd2 : 0 < x

then
act1 : l := l1

INVARIANTS

inv1 : x ∈ N
inv2 : l ∈ L
inv3 : l = l0⇒
0 ≤ x ∧ x ≤ x0 ∧ x0 ∈ N
inv4 : l = l1⇒
0 < x ∧ x ≤ x0 ∧ x0 ∈ N
inv5 : l = l2⇒ x = 0
requires : x0 ∈ N ∧ x = x0
⇒x = x0 ∧ x0 ∈ N
ensures : x = 0 ∧ x = x0
⇒x = 0

Event el0l2
when
grd1 : l = l0
grd2 : ¬(0 < x)

then
act1 : l := l2

Event el1l0
when
grd1 : l = l1

then
act1 : l := l0
act2 : x := x− 1

FMTea in Milan, Italy, September 10, 2024 (Dominique Méry) 32/37

A short example

contract SIMPLE
variables x
requires x0 ∈ N
ensures xf = 0
begin
ℓ0 : {0 ≤ x ≤ x0 ∧ x0 ∈ N}
while 0 < x do
ℓ1 : {0 < x ∧ x ≤ x0 ∧ x0 ∈ N}
x := x− 1;

od
ℓ2 : {x = 0}end

Event Init
then
act1 : x := x0
act2 : l := l0

Event el0l1
when
grd1 : l = l0
grd2 : 0 < x

then
act1 : l := l1

INVARIANTS

inv1 : x ∈ N
inv2 : l ∈ L
inv3 : l = l0⇒
0 ≤ x ∧ x ≤ x0 ∧ x0 ∈ N
inv4 : l = l1⇒
0 < x ∧ x ≤ x0 ∧ x0 ∈ N
inv5 : l = l2⇒ x = 0
requires : x0 ∈ N ∧ x = x0
⇒x = x0 ∧ x0 ∈ N
ensures : x = 0 ∧ x = x0
⇒x = 0

Event el0l2
when
grd1 : l = l0
grd2 : ¬(0 < x)

then
act1 : l := l2

Event el1l0
when
grd1 : l = l1

then
act1 : l := l0
act2 : x := x− 1

FMTea in Milan, Italy, September 10, 2024 (Dominique Méry) 32/37

Current Summary

1 Introduction

2 Motivating by Programming Cases
Detecting overflows in computations
Computing the velocity of an aircraft on the ground
Tracking bugs in C codes

3 Programming by contract

4 Floyd to Hoare

5 Conclusion

FMTea in Milan, Italy, September 10, 2024 (Dominique Méry) 33/37

From Floyd to Hoare

∀xf , x0.pre(x0) ∧ x0
P−→ xf ⇒ post(x0, xf)

∀xf , x0.pre(x0) ⇒ x0
P−→ xf ⇒ post(x0, xf)

∀xf , x0.pre(x0) ⇒ x0
P−→ xf ⇒ post(x0, xf)

∀x0.pre(x0) ⇒ ∀xf .x0
P−→ xf ⇒ post(x0, xf)

∀x0.pre(x0) ⇒ [P]post(x0, xf)

wlp calculus is introduced

[x := e]P (x) = P [x 7→ e]

[if b(x) then S1 else S2]P (x) = b(x)∧[S1]P (x)∨ not b(x) [S2]P (x)

Frama-c uses the HOARE logic for defining the verification
conditions as R. Leino in DAFNY.

Questions of termination require the wp calculus . . .

FMTea in Milan, Italy, September 10, 2024 (Dominique Méry) 33/37

From Floyd to Hoare

∀xf , x0.pre(x0) ∧ x0
P−→ xf ⇒ post(x0, xf)

∀xf , x0.pre(x0) ⇒ x0
P−→ xf ⇒ post(x0, xf)

∀xf , x0.pre(x0) ⇒ x0
P−→ xf ⇒ post(x0, xf)

∀x0.pre(x0) ⇒ ∀xf .x0
P−→ xf ⇒ post(x0, xf)

∀x0.pre(x0) ⇒ [P]post(x0, xf)

wlp calculus is introduced

[x := e]P (x) = P [x 7→ e]

[if b(x) then S1 else S2]P (x) = b(x)∧[S1]P (x)∨ not b(x) [S2]P (x)

Frama-c uses the HOARE logic for defining the verification
conditions as R. Leino in DAFNY.

Questions of termination require the wp calculus . . .

FMTea in Milan, Italy, September 10, 2024 (Dominique Méry) 33/37

From Floyd to Hoare

∀xf , x0.pre(x0) ∧ x0
P−→ xf ⇒ post(x0, xf)

∀xf , x0.pre(x0) ⇒ x0
P−→ xf ⇒ post(x0, xf)

∀xf , x0.pre(x0) ⇒ x0
P−→ xf ⇒ post(x0, xf)

∀x0.pre(x0) ⇒ ∀xf .x0
P−→ xf ⇒ post(x0, xf)

∀x0.pre(x0) ⇒ [P]post(x0, xf)

wlp calculus is introduced

[x := e]P (x) = P [x 7→ e]

[if b(x) then S1 else S2]P (x) = b(x)∧[S1]P (x)∨ not b(x) [S2]P (x)

Frama-c uses the HOARE logic for defining the verification
conditions as R. Leino in DAFNY.

Questions of termination require the wp calculus . . .

FMTea in Milan, Italy, September 10, 2024 (Dominique Méry) 33/37

From Floyd to Hoare

∀xf , x0.pre(x0) ∧ x0
P−→ xf ⇒ post(x0, xf)

∀xf , x0.pre(x0) ⇒ x0
P−→ xf ⇒ post(x0, xf)

∀xf , x0.pre(x0) ⇒ x0
P−→ xf ⇒ post(x0, xf)

∀x0.pre(x0) ⇒ ∀xf .x0
P−→ xf ⇒ post(x0, xf)

∀x0.pre(x0) ⇒ [P]post(x0, xf)

wlp calculus is introduced

[x := e]P (x) = P [x 7→ e]

[if b(x) then S1 else S2]P (x) = b(x)∧[S1]P (x)∨ not b(x) [S2]P (x)

Frama-c uses the HOARE logic for defining the verification
conditions as R. Leino in DAFNY.

Questions of termination require the wp calculus . . .

FMTea in Milan, Italy, September 10, 2024 (Dominique Méry) 33/37

From Floyd to Hoare

∀xf , x0.pre(x0) ∧ x0
P−→ xf ⇒ post(x0, xf)

∀xf , x0.pre(x0) ⇒ x0
P−→ xf ⇒ post(x0, xf)

∀xf , x0.pre(x0) ⇒ x0
P−→ xf ⇒ post(x0, xf)

∀x0.pre(x0) ⇒ ∀xf .x0
P−→ xf ⇒ post(x0, xf)

∀x0.pre(x0) ⇒ [P]post(x0, xf)

wlp calculus is introduced

[x := e]P (x) = P [x 7→ e]

[if b(x) then S1 else S2]P (x) = b(x)∧[S1]P (x)∨ not b(x) [S2]P (x)

Frama-c uses the HOARE logic for defining the verification
conditions as R. Leino in DAFNY.

Questions of termination require the wp calculus . . .

FMTea in Milan, Italy, September 10, 2024 (Dominique Méry) 33/37

From Floyd to Hoare

∀xf , x0.pre(x0) ∧ x0
P−→ xf ⇒ post(x0, xf)

∀xf , x0.pre(x0) ⇒ x0
P−→ xf ⇒ post(x0, xf)

∀xf , x0.pre(x0) ⇒ x0
P−→ xf ⇒ post(x0, xf)

∀x0.pre(x0) ⇒ ∀xf .x0
P−→ xf ⇒ post(x0, xf)

∀x0.pre(x0) ⇒ [P]post(x0, xf)

wlp calculus is introduced

[x := e]P (x) = P [x 7→ e]

[if b(x) then S1 else S2]P (x) = b(x)∧[S1]P (x)∨ not b(x) [S2]P (x)

Frama-c uses the HOARE logic for defining the verification
conditions as R. Leino in DAFNY.

Questions of termination require the wp calculus . . .

FMTea in Milan, Italy, September 10, 2024 (Dominique Méry) 33/37

From Floyd to Hoare

∀xf , x0.pre(x0) ∧ x0
P−→ xf ⇒ post(x0, xf)

∀xf , x0.pre(x0) ⇒ x0
P−→ xf ⇒ post(x0, xf)

∀xf , x0.pre(x0) ⇒ x0
P−→ xf ⇒ post(x0, xf)

∀x0.pre(x0) ⇒ ∀xf .x0
P−→ xf ⇒ post(x0, xf)

∀x0.pre(x0) ⇒ [P]post(x0, xf)

wlp calculus is introduced

[x := e]P (x) = P [x 7→ e]

[if b(x) then S1 else S2]P (x) = b(x)∧[S1]P (x)∨ not b(x) [S2]P (x)

Frama-c uses the HOARE logic for defining the verification
conditions as R. Leino in DAFNY.

Questions of termination require the wp calculus . . .

FMTea in Milan, Italy, September 10, 2024 (Dominique Méry) 33/37

From Floyd to Hoare

∀xf , x0.pre(x0) ∧ x0
P−→ xf ⇒ post(x0, xf)

∀xf , x0.pre(x0) ⇒ x0
P−→ xf ⇒ post(x0, xf)

∀xf , x0.pre(x0) ⇒ x0
P−→ xf ⇒ post(x0, xf)

∀x0.pre(x0) ⇒ ∀xf .x0
P−→ xf ⇒ post(x0, xf)

∀x0.pre(x0) ⇒ [P]post(x0, xf)

wlp calculus is introduced

[x := e]P (x) = P [x 7→ e]

[if b(x) then S1 else S2]P (x) = b(x)∧[S1]P (x)∨ not b(x) [S2]P (x)

Frama-c uses the HOARE logic for defining the verification
conditions as R. Leino in DAFNY.

Questions of termination require the wp calculus . . .

FMTea in Milan, Italy, September 10, 2024 (Dominique Méry) 33/37

From Floyd to Hoare

∀xf , x0.pre(x0) ∧ x0
P−→ xf ⇒ post(x0, xf)

∀xf , x0.pre(x0) ⇒ x0
P−→ xf ⇒ post(x0, xf)

∀xf , x0.pre(x0) ⇒ x0
P−→ xf ⇒ post(x0, xf)

∀x0.pre(x0) ⇒ ∀xf .x0
P−→ xf ⇒ post(x0, xf)

∀x0.pre(x0) ⇒ [P]post(x0, xf)

wlp calculus is introduced

[x := e]P (x) = P [x 7→ e]

[if b(x) then S1 else S2]P (x) = b(x)∧[S1]P (x)∨ not b(x) [S2]P (x)

Frama-c uses the HOARE logic for defining the verification
conditions as R. Leino in DAFNY.

Questions of termination require the wp calculus . . .

FMTea in Milan, Italy, September 10, 2024 (Dominique Méry) 33/37

From Floyd to Hoare

∀xf , x0.pre(x0) ∧ x0
P−→ xf ⇒ post(x0, xf)

∀xf , x0.pre(x0) ⇒ x0
P−→ xf ⇒ post(x0, xf)

∀xf , x0.pre(x0) ⇒ x0
P−→ xf ⇒ post(x0, xf)

∀x0.pre(x0) ⇒ ∀xf .x0
P−→ xf ⇒ post(x0, xf)

∀x0.pre(x0) ⇒ [P]post(x0, xf)

wlp calculus is introduced

[x := e]P (x) = P [x 7→ e]

[if b(x) then S1 else S2]P (x) = b(x)∧[S1]P (x)∨ not b(x) [S2]P (x)

Frama-c uses the HOARE logic for defining the verification
conditions as R. Leino in DAFNY.

Questions of termination require the wp calculus . . .

FMTea in Milan, Italy, September 10, 2024 (Dominique Méry) 33/37

Current Summary

1 Introduction

2 Motivating by Programming Cases
Detecting overflows in computations
Computing the velocity of an aircraft on the ground
Tracking bugs in C codes

3 Programming by contract

4 Floyd to Hoare

5 Conclusion

FMTea in Milan, Italy, September 10, 2024 (Dominique Méry) 34/37

Concluding Remarks

Automatic proof of verification conditions of an Event-B model
written by annotation.

Learn Event-B language and set notation for the next year.

Deepening of notations related to algorithms (endurant variables and
perdurant variables) for preparing specific features of Frama-c.

Next step: learning Frama-c

Feedbacks from students:
▶ 10 % of studets are “trying to install Rodin, TLAToolBox and

Frama-c the day before the practcal exam . . . they complain on the
fact that they have problems.

▶ Effective problems with installing Frama-c on MacOS . . .making a
virtual disk with required software . . . but problems with weak
student machines or with new mac on M . . .

One teacher or more teachers

FMTea in Milan, Italy, September 10, 2024 (Dominique Méry) 34/37

Concluding Remarks

Automatic proof of verification conditions of an Event-B model
written by annotation.

Learn Event-B language and set notation for the next year.

Deepening of notations related to algorithms (endurant variables and
perdurant variables) for preparing specific features of Frama-c.

Next step: learning Frama-c

Feedbacks from students:

▶ 10 % of studets are “trying to install Rodin, TLAToolBox and
Frama-c the day before the practcal exam . . . they complain on the
fact that they have problems.

▶ Effective problems with installing Frama-c on MacOS . . .making a
virtual disk with required software . . . but problems with weak
student machines or with new mac on M . . .

One teacher or more teachers

FMTea in Milan, Italy, September 10, 2024 (Dominique Méry) 34/37

Concluding Remarks

Automatic proof of verification conditions of an Event-B model
written by annotation.

Learn Event-B language and set notation for the next year.

Deepening of notations related to algorithms (endurant variables and
perdurant variables) for preparing specific features of Frama-c.

Next step: learning Frama-c

Feedbacks from students:
▶ 10 % of studets are “trying to install Rodin, TLAToolBox and

Frama-c the day before the practcal exam . . . they complain on the
fact that they have problems.

▶ Effective problems with installing Frama-c on MacOS . . .making a
virtual disk with required software . . . but problems with weak
student machines or with new mac on M . . .

One teacher or more teachers

FMTea in Milan, Italy, September 10, 2024 (Dominique Méry) 34/37

Concluding Remarks

Automatic proof of verification conditions of an Event-B model
written by annotation.

Learn Event-B language and set notation for the next year.

Deepening of notations related to algorithms (endurant variables and
perdurant variables) for preparing specific features of Frama-c.

Next step: learning Frama-c

Feedbacks from students:
▶ 10 % of studets are “trying to install Rodin, TLAToolBox and

Frama-c the day before the practcal exam . . . they complain on the
fact that they have problems.

▶ Effective problems with installing Frama-c on MacOS . . .

making a
virtual disk with required software . . . but problems with weak
student machines or with new mac on M . . .

One teacher or more teachers

FMTea in Milan, Italy, September 10, 2024 (Dominique Méry) 34/37

Concluding Remarks

Automatic proof of verification conditions of an Event-B model
written by annotation.

Learn Event-B language and set notation for the next year.

Deepening of notations related to algorithms (endurant variables and
perdurant variables) for preparing specific features of Frama-c.

Next step: learning Frama-c

Feedbacks from students:
▶ 10 % of studets are “trying to install Rodin, TLAToolBox and

Frama-c the day before the practcal exam . . . they complain on the
fact that they have problems.

▶ Effective problems with installing Frama-c on MacOS . . .making a
virtual disk with required software . . .

but problems with weak
student machines or with new mac on M . . .

One teacher or more teachers

FMTea in Milan, Italy, September 10, 2024 (Dominique Méry) 34/37

Concluding Remarks

Automatic proof of verification conditions of an Event-B model
written by annotation.

Learn Event-B language and set notation for the next year.

Deepening of notations related to algorithms (endurant variables and
perdurant variables) for preparing specific features of Frama-c.

Next step: learning Frama-c

Feedbacks from students:
▶ 10 % of studets are “trying to install Rodin, TLAToolBox and

Frama-c the day before the practcal exam . . . they complain on the
fact that they have problems.

▶ Effective problems with installing Frama-c on MacOS . . .making a
virtual disk with required software . . . but problems with weak
student machines or with new mac on M . . .

One teacher or more teachers

FMTea in Milan, Italy, September 10, 2024 (Dominique Méry) 34/37

Concluding Remarks

Automatic proof of verification conditions of an Event-B model
written by annotation.

Learn Event-B language and set notation for the next year.

Deepening of notations related to algorithms (endurant variables and
perdurant variables) for preparing specific features of Frama-c.

Next step: learning Frama-c

Feedbacks from students:
▶ 10 % of studets are “trying to install Rodin, TLAToolBox and

Frama-c the day before the practcal exam . . . they complain on the
fact that they have problems.

▶ Effective problems with installing Frama-c on MacOS . . .making a
virtual disk with required software . . . but problems with weak
student machines or with new mac on M . . .

One teacher or more teachers

FMTea in Milan, Italy, September 10, 2024 (Dominique Méry) 34/37

Concluding Remarks

Automatic proof of verification conditions of an Event-B model
written by annotation.

Learn Event-B language and set notation for the next year.

Deepening of notations related to algorithms (endurant variables and
perdurant variables) for preparing specific features of Frama-c.

Next step: learning Frama-c

Feedbacks from students:
▶ 10 % of studets are “trying to install Rodin, TLAToolBox and

Frama-c the day before the practcal exam . . . they complain on the
fact that they have problems.

▶ Effective problems with installing Frama-c on MacOS . . .making a
virtual disk with required software . . . but problems with weak
student machines or with new mac on M . . .

One teacher or more teachers

FMTea in Milan, Italy, September 10, 2024 (Dominique Méry) 34/37

Sketch

The main steps of our method:

FORMALISATION Expression of the contract as assertions defined
in an Event-Bcontext.

TRANSLATION Translation of annotations as elements of the
invariant and of the basic computation steps between two successive
labels as events.

M-ALGORITHM

C-CONTRACT pre/post specification

algorithm

formalisation

translation

fulfilmentSEES

FMTea in Milan, Italy, September 10, 2024 (Dominique Méry) 35/37

Next year . . .

AM4: abstract machine

AM3: abstract machine

AM2: abstract machine

AM1: abstract machine

AM0: abstract machine

C(D): context

C: contract

D: domain

A:algorithm

formalisation

satisfies

translation

SEES

SEES

SEES

SEES

REFINES

REFINES

REFINES

REFINES

FMTea in Milan, Italy, September 10, 2024 (Dominique Méry) 36/37

Summary of concepts

Knowledge LanguageOntology Language Documentation Language

DomainTheory

Assertion Language Programming Language

Annotated Programming Language

TLA+/PlusCal Event-B C Lustre Timed-Automata

ToolBox Rodin Frama-C Kind2 Uppaal

integratesintegrates

FMTea in Milan, Italy, September 10, 2024 (Dominique Méry) 37/37

	Introduction
	Motivating by Programming Cases
	Detecting overflows in computations
	Computing the velocity of an aircraft on the ground
	Tracking bugs in C codes

	Programming by contract
	Floyd to Hoare
	Conclusion

